
Adafruit LIS3DH Triple-Axis
Accelerometer Breakout

Created by lady ada

https://learn.adafruit.com/adafruit-lis3dh-triple-axis-accelerometer-breakout

Last updated on 2024-06-03 01:49:13 PM EDT

©Adafruit Industries Page 1 of 31

3

6

9

12

21

29

29

Table of Contents

Overview

Pinouts
• Power Pins
• I2C Pins
• SPI pins:
• Other Pins
• Other Pins - STEMMA QT Version

Assembly
• Prepare the header strip:
• Add the breakout board:
• And Solder!

Arduino
• I2C Wiring
• SPI Wiring
• Download Adafruit_LIS3DH library
• Accelerometer Demo
• Accelerometer ranges
• Raw data readings
• Normalized readings
• Tap & Double tap detection
• Reading the 3 ADC pins

Python & CircuitPython
• CircuitPython Microcontroller Wiring
• Python Computer Wiring
• CircuitPython Installation of LIS3DH Library
• Python Installation of LIS3DH Library
• CircuitPython & Python Usage
• Full Example Code

Python Docs

Downloads
• Datasheets
• Schematic and Fabrication Print - STEMMA QT Version
• Schematic and Fabrication Print - Original Version

©Adafruit Industries Page 2 of 31

Overview

The LIS3DH is a very popular low power triple-axis accelerometer. It's low-cost, but
has just about every 'extra' you'd want in an accelerometer:

Three axis sensing
±2g/±4g/±8g/±16g selectable scaling
Both I2C (2 possible addresses) and SPI interface options
Interrupt output
Multiple data rate options 1 Hz to 5Khz
As low as 2uA current draw (just the chip itself, not including any supporting
circuitry)
Tap, Double-tap, orientation & freefall detection
3 additional ADC inputs you can read over I2C

We kept seeing this accelerometer in teardowns of commercial products and figured
that if it's the most-commonly used accelerometer, its worth having a breakout board!

•
•
•
•
•
•

•
•

©Adafruit Industries Page 3 of 31

This sensor communicates over I2C or SPI (our library code supports both) so you can
share it with a bunch of other sensors on the same I2C bus. There's an address
selection pin so you can have two accelerometers share an I2C bus.

To get you going fast, we spun up a custom made PCB in the STEMMA QT form
factor (https://adafru.it/LBQ), making them easy to interface with. The STEMMA QT
connectors (https://adafru.it/JqB) on either side are compatible with the SparkFun
Qwiic (https://adafru.it/Fpw) I2C connectors. This allows you to make solderless
connections between your development board and the LIS3DHs or to chain them with
a wide range of other sensors and accessories using a compatible cable (https://
adafru.it/JnB).

©Adafruit Industries Page 4 of 31

https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://www.adafruit.com/?q=stemma%20qt%20sensor
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma-qt
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma%20qt%20cable

We’ve of course broken out all the pins to standard headers and added a voltage
regulator and level shifting so allow you to use it with either 3.3V or 5V systems such
as the Raspberry Pi + Feather series or Arduino Uno respectively.

Comes with a bit of 0.1" standard header in case you want to use it with a breadboard
or perfboard. Four mounting holes for easy attachment.

There are two versions of this board - the STEMMA QT version shown above, and
the original header-only version shown below. Code works the same on both!

©Adafruit Industries Page 5 of 31

Pinouts

The little chip in the middle of the PCB is the actual LIS3DH sensor that does all the
motion sensing. We add all the extra components you need to get started, and 'break
out' all the other pins you may want to connect to onto the PCB. For more details you
can check out the schematics in the Downloads page.

©Adafruit Industries Page 6 of 31

Power Pins
The sensor on the breakout requires 3V power. Since many customers have 5V
microcontrollers like Arduino, we tossed a 3.3V regulator on the board. Its ultra-low
dropout so you can power it from 3.3V-5V just fine.

Vin - this is the power pin. Since the chip uses 3 VDC, we have included a
voltage regulator on board that will take 3-5VDC and safely convert it down. To
power the board, give it the same power as the logic level of your
microcontroller - e.g. for a 5V micro like Arduino, use 5V
3Vo - this is the 3.3V output from the voltage regulator, you can grab up to
100mA from this if you like
GND - common ground for power and logic

I2C Pins
SCL - I2C clock pin, connect to your microcontrollers I2C clock line. Has a 10K
pullup already on it.
SDA - I2C data pin, connect to your microcontrollers I2C data line. Has a 10K
pullup already on it.

To use I2C, keep the CS pin either disconnected or tied to a high (3-5V) logic
level.

SDO - When in I2C mode, this pin can be used for address selection. When
connected to GND or left open, the address is 0x18 - it can also be connected to
3.3V to set the address to 0x19. On the STEMMA/QT version of the board, there
is a jumper on the bottom you can solder closed to connect SDO to 3.3V.
STEMMA QT (https://adafru.it/Ft4) - These connectors allow you to connectors
to dev boards with STEMMA QT connectors or to other things with various
associated accessories (https://adafru.it/Ft6).

•

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 31

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=JST%20SH%204

SPI pins:
All pins going into the breakout have level shifting circuitry to make them 3-5V logic
level safe. Use whatever logic level is on Vin!

SCL - this is the SPI Clock pin, its an input to the chip
SDA - this is the Serial Data In / Microcontroller Out Sensor In pin, for data sent
from your processor to the LIS3DH
SDO - this is the Serial Data Out / Microcontroller In Sensor Out pin, for data
sent from the LIS3DH to your processor. It's 3.3V logic level out
CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an input
to the chip

If you want to connect multiple LIS3DH's to one microcontroller, have them share the
SDI, SDO and SCK pins. Then assign each one a unique CS pin.

Other Pins
INT is the interrupt output pin. You can configure the interupt to trigger for
various 'reasons' such as motion, tilt, taps, data ready etc. This pin is 3.3V logic
output.
A1 - A3 - Analog to Digital converter inputs 1-3.

Other Pins - STEMMA QT Version
I2 - is the second interrupt output pin. You can configure the interupt to trigger
for various 'reasons' such as motion, tilt, taps, data ready etc. This pin is 3.3V
logic output.

•
•

•

•

•

•

•

©Adafruit Industries Page 8 of 31

Assembly

Prepare the header strip:
Cut/break the header strip into two pieces,
one 3 pin and one 8 pin. It will be easier to
solder if you insert it into a breadboard -
long pins down

Add the breakout board:
Place the breakout board over the pins so
that the short pins poke through the
breakout pads

©Adafruit Industries Page 9 of 31

https://learn.adafruit.com//assets/28594
https://learn.adafruit.com//assets/28594
https://learn.adafruit.com//assets/28595
https://learn.adafruit.com//assets/28595

And Solder!
Be sure to solder all pins for reliable
electrical contact. We'll start with the main
8 pins for power & the I2C/SPI interface.

(For tips on soldering, be sure to check out
our Guide to Excellent Soldering (https://
adafru.it/aTk)).

©Adafruit Industries Page 10 of 31

https://learn.adafruit.com//assets/28597
https://learn.adafruit.com//assets/28597
https://learn.adafruit.com//assets/28598
https://learn.adafruit.com//assets/28598
https://learn.adafruit.com//assets/28599
https://learn.adafruit.com//assets/28599
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

If you want to have the board be more
mechanically stable, or want to use the
ADC pins, solder in the 3 ADC pads too

You're done! Check your solder joints
visually and continue onto the next steps

©Adafruit Industries Page 11 of 31

https://learn.adafruit.com//assets/28600
https://learn.adafruit.com//assets/28600
https://learn.adafruit.com//assets/28601
https://learn.adafruit.com//assets/28601
https://learn.adafruit.com//assets/28602
https://learn.adafruit.com//assets/28602

Arduino

You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For
another kind of microcontroller, as long as you have 4 available pins it is possible to
'bit-bang SPI' or you can use two I2C pins, but usually those pins are fixed in
hardware. Just check out the library, then port the code.

I2C Wiring
Use this wiring if you want to connect via I2C interface

©Adafruit Industries Page 12 of 31

Connect Vin to the power supply, 3-5V is
fine. (red wire on STEMMA QT version)
Use the same voltage that the
microcontroller logic is based off of. For
most Arduinos, that is 5V
Connect GND to common power/data
ground (black wire on STEMMA QT
version)
Connect the SCL pin to the I2C clock SCL
pin on your Arduino. (yellow wire on
STEMMA QT version) On an UNO & '328
based Arduino, this is also known as A5,
on a Mega it is also known as digital 21
and on a Leonardo/Micro, digital 3
Connect the SDA pin to the I2C data SDA
pin on your Arduino. (blue wire on
STEMMA QT version) On an UNO & '328
based Arduino, this is also known as A4,
on a Mega it is also known as digital 20
and on a Leonardo/Micro, digital 2

SPI Wiring
Since this is also an SPI-capable sensor, we can use hardware or 'software' SPI. To
make wiring identical on all Arduinos, we'll begin with 'software' SPI. The following
pins should be used:

©Adafruit Industries Page 13 of 31

https://learn.adafruit.com//assets/94416
https://learn.adafruit.com//assets/94416
https://learn.adafruit.com//assets/94417
https://learn.adafruit.com//assets/94417
https://learn.adafruit.com//assets/94418
https://learn.adafruit.com//assets/94418

Connect Vin to the power supply, 3V or 5V
is fine. Use the same voltage that the
microcontroller logic is based off of. For
most Arduinos, that is 5V
Connect GND to common power/data
ground
Connect the SCL (SCK) pin to Digital #13
but any pin can be used later
Connect the SDO pin to Digital #12 but
any pin can be used later
Connect the SDA (SDI) pin to Digital #11
but any pin can be used later
Connect the CS pin Digital #10 but any pin
can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if you
desire, or change the pins to other pins.

Download Adafruit_LIS3DH library
To begin reading sensor data, you will need to download Adafruit LIS3DH and
Adafruit Unified Sensor from the Arduino Library Manager.

Open up the Arduino Library Manager:

©Adafruit Industries Page 14 of 31

https://learn.adafruit.com//assets/94420
https://learn.adafruit.com//assets/94420
https://learn.adafruit.com//assets/94421
https://learn.adafruit.com//assets/94421

Search for the Adafruit LIS3DH library and install it

Search for the Adafruit Unified Sensor library and install it

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

Accelerometer Demo
Open up File->Examples->Adafruit_LIS3DH->acceldemo and upload to your Arduino
wired up to the sensor

Depending on whether you are using I2C or SPI, change the pin names and comment
or uncomment the following lines.

©Adafruit Industries Page 15 of 31

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

// Used for software SPI
#define LIS3DH_CLK 13
#define LIS3DH_MISO 12
#define LIS3DH_MOSI 11
// Used for hardware & software SPI
#define LIS3DH_CS 10

// software SPI
//Adafruit_LIS3DH lis = Adafruit_LIS3DH(LIS3DH_CS, LIS3DH_MOSI, LIS3DH_MISO,
LIS3DH_CLK);
// hardware SPI
//Adafruit_LIS3DH lis = Adafruit_LIS3DH(LIS3DH_CS);
// I2C
Adafruit_LIS3DH lis = Adafruit_LIS3DH();

Once uploaded to your Arduino, open up the serial console at 9600 baud speed to
see data being printed out

Normally, sitting on a table, you'll see X and Y are close to 0 and Z will be about 1 g or
~9.8 m/s^2 because the accelerometer is measuring the force of gravity!

You can also move around the board to measure your movements and also try tilting
it to see how the gravity 'force' appears at different axes.

Not that you'll see there's two sets of data!

©Adafruit Industries Page 16 of 31

Accelerometer ranges

Accelerometers don't 'naturally' spit out a "meters per second squared" value.
Instead, they give you a raw value. In this sensor's case, its a number ranging from
-32768 and 32767 (a full 16-bit range). Depending on the sensor range, this number
scales between the min and max of the range. E.g. if the accelerometer is set to +-2g
then 32767 is +2g of force, and -32768 is -2g. If the range is set to +-16g, then those
two number correlate to +16g and -16g respectively. So knowing the range is key to
deciphering the data!

You can set, and get the range with:

lis.setRange(LIS3DH_RANGE_4_G); // 2, 4, 8 or 16 G!
Serial.print("Range = "); Serial.print(2 << lis.getRange());

In the first line, you can use
LIS3DH_RANGE_2_G, LIS3DH_RANGE_4_G, LIS3DH_RANGE_8_G,
or LIS3DH_RANGE_16_G

When reading the range back from the sensor, 0 is ±2g, 1 is ±4g, 2 is ±8g and 3 is
±16g range

Raw data readings

You can get these raw readings by calling lis.read() which will take a snapshot at
that moment in time. You can then grab the x, y and z data by reading the signed 16-
bit values from lis.x , lis.y and lis.z . When you are done with that data, call
read() again to get another snapshot.

Normalized readings

If you dont want to noodle around with range readings and scalings, you can use
Adafruit_Sensor to do the normalization for you. Its a nice way to have consistant
readings betwixt multiple types of accelerometers.

Adafruit_Sensor uses event (sensors_event_t) objects to 'snapshot' the data:

/* Get a new sensor event */
sensors_event_t event;
lis.getEvent(&event);

©Adafruit Industries Page 17 of 31

Once you've getEvent 'd the data, read it out from the event object with
event.acceleration.x , event.acceleration.y & event.acceleration.z

The key point is that those values are floating point, and are going to be in m/s2 No
matter the range!

It's up to you whether you want the raw numbers or normalized data - there's times
you want to keep it simple and avoid floating point numbers, and other times you may
want to avoid doing the math for force conversion.

Tap & Double tap detection
One of the neat extras in the LIS3DH is tap & double-tap detection. By tapping the
accelerometer or the PCB or something the PCB is attached to you can create a type
of interface.

Open up the tapdemo demo to run it! It defaults to I2C so change to SPI if you're
using that interface.

The tap detection works by looking for when one of the axes has an acceleration
higher than a certain threshhold for longer than a certain timelimit. The threshhold is
in 'raw' values so you have to adjust it based on the scale/range you've configured for
the sensor:

©Adafruit Industries Page 18 of 31

// Adjust this number for the sensitivity of the 'click' force
// this strongly depend on the range! for 16G, try 5-10
// for 8G, try 10-20. for 4G try 20-40. for 2G try 40-80
#define CLICKTHRESHHOLD 80

Larger numbers are less sensitive, you'll really need to just tweak as necessary for
your project.

You'll also have to turn on click detection. This will also se the INT pin to pulse high
whenever a tap or double tap is detected. If you turn on double tap detection it will
still 'decode' single taps but the INT pin wont pulse on them.

 // 0 = turn off click detection & interrupt
 // 1 = single click only interrupt output
 // 2 = double click only interrupt output, detect single click
 // Adjust threshhold, higher numbers are less sensitive
 lis.setClick(2, CLICKTHRESHHOLD);

setClick can actually take many more arguments, the full list is:

 void setClick(uint8_t c, uint8_t clickthresh, uint8_t timelimit = 10, uint8_t
timelatency = 20, uint8_t timewindow = 255);

The timelimit timelatency and timewindow are in units of "ODR" so if you change the
sample frequency of the LIS3DH you'll have to adjust these as necessary. The App
note has way more details on this, with pretty graphs & eveything! (https://adafru.it/
jwf)

You can get the current click status register with lis.getClick() . Note that will
return the raw 8-bit reg known as LIS3DH_REG_CLICKSRC

©Adafruit Industries Page 19 of 31

http://www.adafruit.com/datasheets/LIS3DHappnote.pdf
http://www.adafruit.com/datasheets/LIS3DHappnote.pdf

Even though that register has 'axis' bits that theoretically tell you which axis the click
is from, unless you bolt the breakout to a huge thing like a table and thwack the table,
any 'direct hits' to the sensor itself will register on any/all axes because of the small
scale.

Reading the 3 ADC pins
Finally, there are 3 extra 10-bit analog-digital-converter pins available. The details on
these pins is scarce but we do have code for reading data for them. This might be
handy if you have a device without any ADC's

You can load the readadc demo sketch to start reading

I connected a trimpot from ground (left pin) to 3.3V (right pin) and conneted the wiper
(center pin) to ADC1

For pins that don't have anything connected, such as ADC2 and ADC3 you'll notice
the values flicker around a lot. If you don't like this, just tie the pins to GND and it will
keep the values 'steady'

The values of the ADC range from -32512 to 32512 but note that they correspond to
~1.8V to ~0.9V. You can map the raw values to an approx voltage using

 volt = map(adc, -32512, 32512, 1800, 900);

While you can put 0-3.3V into the ADC pins, the valid reading range is only ~0.9V
to 1.8V

©Adafruit Industries Page 20 of 31

Which will convert the raw adc value into volt in units of millivolts

Python & CircuitPython
It's easy to use the LIS3DH sensor with Python or CircuitPython, and the Adafruit
CircuitPython LIS3DH (https://adafru.it/uBs) module. This module allows you to easily
write Python code that reads acceleration from the sensor.

You can use this sensor with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring
First wire up a LIS3DH to your board exactly as shown on the previous pages for
Arduino. You can use either I2C or SPI wiring, although it's recommended to use I2C
for simplicity. Here's an example of wiring a Feather M0 or M4 to the sensor with I2C:

©Adafruit Industries Page 21 of 31

https://github.com/adafruit/Adafruit_CircuitPython_LIS3DH
https://github.com/adafruit/Adafruit_CircuitPython_LIS3DH
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Board 3V to sensor Vin (red wire on
STEMMA QT version)
Board GND to sensor GND (black wire on
STEMMA QT version)
Board SCL to sensor SCL (yellow wire on
STEMMA QT version)
Board SDA to sensor SDA (blue wire on
STEMMA QT version)
Board D6 to sensor INT (or use any other
free digital I/O pin)

And an example of a Feather M0 or M4 wired with hardware SPI:

©Adafruit Industries Page 22 of 31

https://learn.adafruit.com//assets/94423
https://learn.adafruit.com//assets/94423
https://learn.adafruit.com//assets/94425
https://learn.adafruit.com//assets/94425
https://learn.adafruit.com//assets/94426
https://learn.adafruit.com//assets/94426

Board 3V to sensor Vin
Board GND to sensor GND
Board SCK to sensor SCL
Board MOSI to sensor SDA
Board MISO to sensor SDO
Board D5 to sensor CS (or use any other
free digital I/O pin)
Board D6 to sensor INT (or use any other
free digital I/O pin)

Python Computer Wiring
Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired with I2C:

The INT pin is used for tap detection, if you aren't planning on using the tap
detection capability, you can leave that pin disconnected

©Adafruit Industries Page 23 of 31

https://learn.adafruit.com//assets/94427
https://learn.adafruit.com//assets/94427
https://learn.adafruit.com//assets/94428
https://learn.adafruit.com//assets/94428
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 3V3 to sensor Vin (red wire on
STEMMA QT version)
Pi GND to sensor GND (black wire on
STEMMA QT version)
Pi SCL to sensor SCL (yellow wire on
STEMMA QT version)
Pi SDA to sensor SDA (blue wire on
STEMMA QT version)
Pi GPIO6 to sensor INT (or use any other
free digital I/O pin)

And an example on the Raspberry Pi 3 Model B wired with SPI:

©Adafruit Industries Page 24 of 31

https://learn.adafruit.com//assets/94429
https://learn.adafruit.com//assets/94429
https://learn.adafruit.com//assets/94431
https://learn.adafruit.com//assets/94431
https://learn.adafruit.com//assets/94432
https://learn.adafruit.com//assets/94432

Pi 3V3 to sensor Vin
Pi GND to sensor GND
Pi SCLK to sensor SCL
Pi MOSI to sensor SDA
Pi MISO to sensor SDO
Pi GPIO5 to sensor CS (or use any other
free digital I/O pin)
Pi GPIO6 to sensor INT (or use any other
free digital I/O pin)

CircuitPython Installation of LIS3DH Library
Next you'll need to install the Adafruit CircuitPython LIS3DH (https://adafru.it/
uBs) library on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/tBa) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). For example the Circuit Playground Express guide has a
great page on how to install the library bundle (https://adafru.it/ABU) for both express
and non-express boards.

The INT pin is used for tap detection, if you aren't planning on using the tap
detection capability, you can leave that pin disconnected

©Adafruit Industries Page 25 of 31

https://learn.adafruit.com//assets/94433
https://learn.adafruit.com//assets/94433
https://learn.adafruit.com//assets/94434
https://learn.adafruit.com//assets/94434
https://github.com/adafruit/Adafruit_CircuitPython_LIS3DH
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/
Metro M0 basic you'll need to manually install the necessary libraries from the bundle:

adafruit_lis3dh.mpy
adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has
the adafruit_lis3dh.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the
CircuitPython >>> prompt.

Python Installation of LIS3DH Library
You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling I2C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer
ready (https://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-lis3dh

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage
To demonstrate the usage of the sensor we'll initialize it and read the acceleration
from the board's Python REPL.

If you're using an I2C connection run the following code to import the necessary
modules and initialize the I2C connection with the sensor:

import time
import board
import digitalio
import adafruit_lis3dh
i2c = board.I2C()
int1 = digitalio.DigitalInOut(board.D6) # Set this to the correct pin for the

•
•

•

©Adafruit Industries Page 26 of 31

https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

interrupt!
lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c, int1=int1)

Or if you're using a SPI connection run this code instead to setup the SPI connection
and sensor:

import time
import board
import digitalio
import adafruit_lis3dh
spi = board.SPI()
cs = digitalio.DigitalInOut(board.D5) # Set to appropriate CS pin!
int1 = digitalio.DigitalInOut(board.D6) # Set to correct pin for interrupt!
lis3dh = adafruit_lis3dh.LIS3DH_SPI(spi, cs, int1=int1)

Now you're ready to read values from the sensor using any of these properties:

acceleration - The x, y, z acceleration values returned in a 3-tuple and are in m /
s ^ 2.
shake - Detect when the accelerometer is shaken.
tapped - Detect when the accelerometer is tapped.

For example, to print acceleration:

x, y, z = lis3dh.acceleration
print(x, y, z)

To use shake, we've set the optional shake_threshold=15 . The default is 30 , but
lower numbers make it easier to get the shake response. Try the following code. Enter
it into the REPL and then shake the board.

while True:
 if lis3dh.shake(shake_threshold=15):
 print("Shaken!")

To use tapped, you need to use lis3dh.set_tap to tell it whether to look for a
single- (1) or double-tap (2), and provide a threshold. We've chosen to look for a

•

•
•

©Adafruit Industries Page 27 of 31

double tap (2) and set the threshold to 60 . Enter the following code into the REPL
and then tap the board twice.

lis3dh.set_tap(2, 60)
while True:
 if lis3dh.tapped:
 print("Tapped!")
 time.sleep(0.01)

That's all there is to using the LIS3DH sensor with CircuitPython!

Full Example Code
SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import busio
import adafruit_lis3dh

Hardware I2C setup. Use the CircuitPlayground built-in accelerometer if available;
otherwise check I2C pins.
if hasattr(board, "ACCELEROMETER_SCL"):

i2c = busio.I2C(board.ACCELEROMETER_SCL, board.ACCELEROMETER_SDA)
lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c, address=0x19)

else:
i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a

microcontroller
lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c)

Hardware SPI setup:
spi = board.SPI()
cs = digitalio.DigitalInOut(board.D5) # Set to correct CS pin!
lis3dh = adafruit_lis3dh.LIS3DH_SPI(spi, cs)

PyGamer or MatrixPortal I2C Setup:
i2c = board.I2C() # uses board.SCL and board.SDA
lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c, address=0x19)

Set range of accelerometer (can be RANGE_2_G, RANGE_4_G, RANGE_8_G or RANGE_16_G).
lis3dh.range = adafruit_lis3dh.RANGE_2_G

Loop forever printing accelerometer values
while True:

Read accelerometer values (in m / s ^ 2). Returns a 3-tuple of x, y,
z axis values. Divide them by 9.806 to convert to Gs.
x, y, z = [

©Adafruit Industries Page 28 of 31

value / adafruit_lis3dh.STANDARD_GRAVITY for value in lis3dh.acceleration
]
print("x = %0.3f G, y = %0.3f G, z = %0.3f G" % (x, y, z))
Small delay to keep things responsive but give time for interrupt processing.
time.sleep(0.1)

Python Docs
Python Docs (https://adafru.it/C6d)

Downloads

Datasheets
LIS3DH app note (https://adafru.it/jwf)
ST design resources (https://adafru.it/mQc)
Fritzing object available in the Adafruit Fritzing Library (https://adafru.it/aP3)
EagleCAD PCB files on GitHub (https://adafru.it/quF)

LIS3DH Datasheet (2016).pdf
https://adafru.it/HC5

Schematic and Fabrication Print - STEMMA
QT Version

•
•
•
•

©Adafruit Industries Page 29 of 31

https://circuitpython.readthedocs.io/projects/lis3dh/en/latest/
http://www.adafruit.com/datasheets/LIS3DHappnote.pdf
http://www2.st.com/content/st_com/en/products/mems-and-sensors/accelerometers/lis3dh.html
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-LIS3DH-Breakout-PCB
https://cdn-learn.adafruit.com/assets/assets/000/085/846/original/lis3dh.pdf?1576396666

Schematic and Fabrication Print - Original
Version
click to enlarge

©Adafruit Industries Page 30 of 31

Dimensions in inches

©Adafruit Industries Page 31 of 31

	Adafruit LIS3DH Triple-Axis Accelerometer Breakout
	Table of Contents
	Overview
	Pinouts
	Assembly
	Arduino
	Python & CircuitPython
	Python Docs
	Downloads

	Overview
	Pinouts
	Power Pins
	I2C Pins
	SPI pins:
	Other Pins
	Other Pins - STEMMA QT Version
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Arduino
	I2C Wiring
	SPI Wiring
	Download Adafruit_LIS3DH library
	Accelerometer Demo
	Accelerometer ranges
	Raw data readings
	Normalized readings

	Tap & Double tap detection
	Reading the 3 ADC pins
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of LIS3DH Library
	Python Installation of LIS3DH Library
	CircuitPython & Python Usage
	Full Example Code
	Python Docs
	Downloads
	Datasheets
	Schematic and Fabrication Print - STEMMA QT Version
	Schematic and Fabrication Print - Original Version

