

VRRM	= 650	V
IF (TC=135 °C)	= 27	А
QC	= 90	nC

General Features

- 650V Schottky Rectifier
- Zero Reverse Recovery Current
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Typical Applications

- Switch Mode Power Supplies (SMPS)
- Power Factor Correction
- Motor Drives

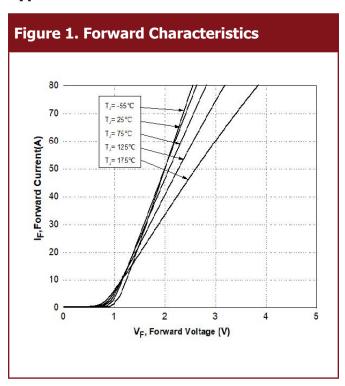
Part Number	Package	Marking	
QSD20HCS65U	TO247-2L	Q	

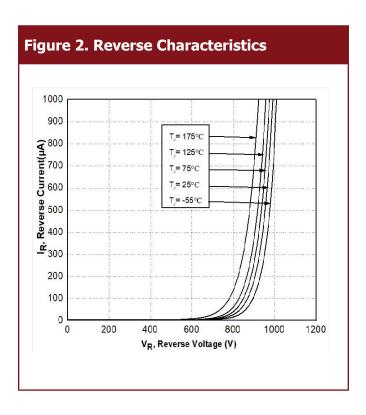
Maximum Rated Values (TC=25°C unless otherwise specified)

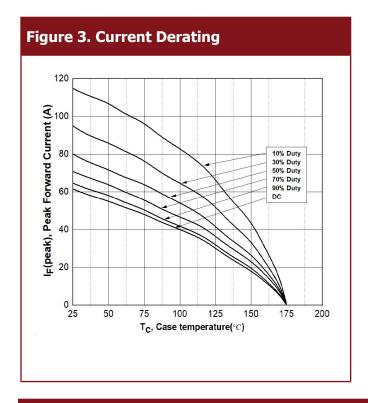
Symbol	Parameter	Value	Unit	Test Conditions	Note
VRRM	Repetitive Peak Reverse Voltage	650	V		
VR	DC Peak Reverse Voltage	650	V		
T.F.	Continuous Forward Comment	62	А	TC=25°C	Fig.
IF	Continuous Forward Current	27		TC=135°C	3
		20		Tc=150°C	
	Popotitivo Pook Forward Surgo	79		TC=25°C, tP=10 ms, Half Sine Pulse	
IFRM	Repetitive Peak Forward Surge Current	69	А	TC=110°C, tP=10 ms, Half Sine Pulse	
	Non Donatitive Forward Curae	99		TC=25°C, tP=10 ms, Half Sine Pulse	
IFSM	Non-Repetitive Forward Surge Current	86	A	TC=110°C, tP=10 ms, Half Sine Pulse	
IF,MAX Non-Repetitive Forward Surge Current		557	_	TC=25°C, tP=10µs, Square Wave Pulse	
		422	Α	TC=110°C, tP=10µs, Square Wave Pulse	
Dtot	Dower Dissipation		W	TC=25°C	Fig.
Ptot Power Dissipation		83	VV	TC=110°C	4
TJ	Operating Temperature	-55 to +175	°C		
Tstg	Storage Temperature	-55 to +175	°C		
	TO-247 Mounting Torque	1 8.8	Nm Ibf-in	M3 Screw 6-32 Screw	

Electrical Characteristics (TJ=25°C)

Combal	D	Value			11	Took Conditions	Nata	
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
VF	Forward Voltage		1.4	2.0	V	IF=20A, TJ=25°C	Eig 1	
VF	Forward Voltage		1.6	2.2	V	IF=20A, TJ=175°C	Fig. 1	
IR	Reverse Current		0.8	100		VR=650V, TJ=25°C	Fig. 2	
Reverse Current		10		μA	VR=650V, TJ=175°C	Fig. 2		
QC	Total Capacitive Charge		90		nC	VR=650V,TJ=25°C	Fig. 5	
			1349			VR=0V, TJ=25°C, f=1MHz		
C Total Capacitance	Total Capacitance		110		pF	VR=400V, TJ=25°C, f=1MHz	Fig. 6	
			108			VR=650V, TJ=25°C, f=1MHz		
EC	Capacitance Stored Energy		17		μJ	VR=650 V	Fig. 7	


Thermal Characteristics


Symbol	Parameter	Value	Unit	Note
ReJC	Thermal Resistance(Junction to Case)	0.78	°C/W	Fig. 8



Typical Performance

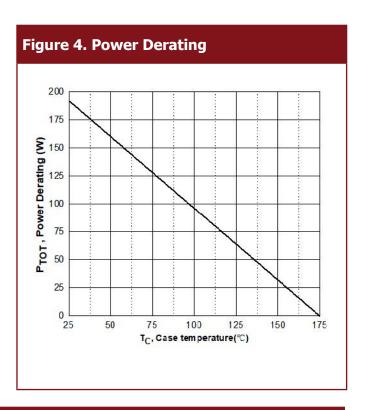


Figure 5. Capacitance Charge Vs. Reverse Voltage

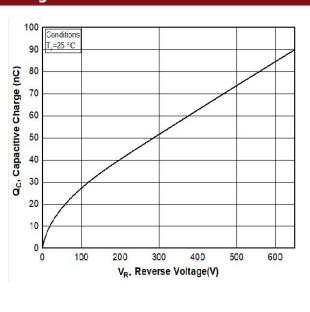


Figure 6. Capacitance Vs. Reverse Voltage

1400

1200

1200

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

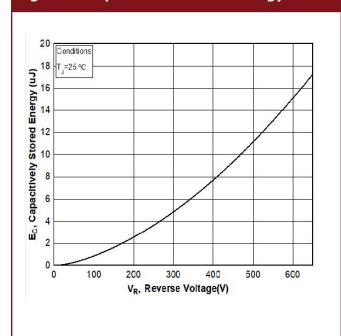
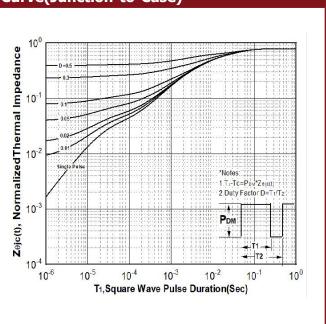
1000

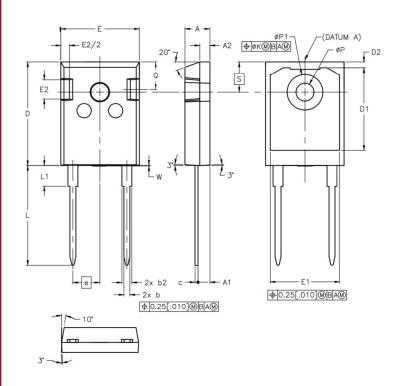
1000

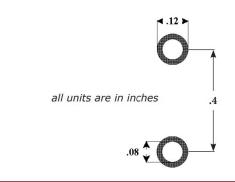
1000

VR, Reverse Voltage(V)

Figure 7. Capacitance Stored Energy


Figure 8. Transient Thermal Response Curve(Junction-to-Case)



Package Dimensions

DOC	Inc	hes	Millimeters		
POS	Min	Max	Min	Max	
Α	.190	.205	4.70	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
b2	.065	.094	1.65	2.39	
С	.015	.035	0.38	0.89	
D	.819	.845	20.80	21.46	
D1	.515		13.08	-	
D2	.020	.053	0.51	1.35	
Е	.620	.640	15.49	16.26	
E1	.530	-	13.46	-	
E2	.135	.157	3.43	3.99	
е	.2	14	5.44		
ØK	.0	10	0.25		
Ĺ	.780	.800	19.81	20.32	
L1	-	.177	-	4.50	
ØΡ	.140	.144	3.56	3.66	
ØP1	.278	.291	7.06	7.39	
Q	.212	.244	5.38	6.20	
S	.2	43	6.17		
W	-	.006	14	0.15	

Recommended Solder Pad Layout

Part Number	Package	Marking
QSD20HCS65U	TO247-2L	Q

Attention

- Specifications of any and all products described or contained herein stipulate the performance, characteritics, andf unctions of the described products in the independent state, and are not guarantees of the performance, characteristics and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- We assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Silicon products described or contained herein.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.