

VRRM =	5000 V
IF (TC=135 °C) =	66A(TO247-2L)
QC =	365 nC

General Description

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Features

- 5kV Schottky Rectifier
- Zero Reverse Recovery Current
- High-Frequency Operation
- Temperature-Independent Switching Behavior
- Extremely Fast Switching

Typical Applications

- Switch Mode Power Supplies (SMPS)
- Power Factor Correction
- Motor Drives

Part Number	Package	Marking
QSD10HCS500U	TO-247-2L	Queensland Semiconductor

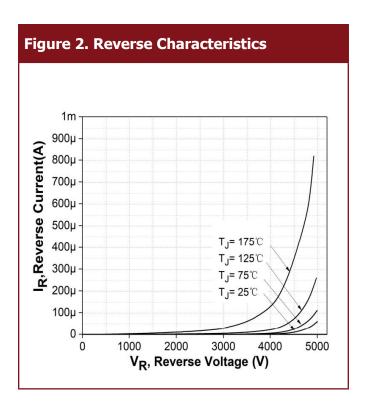
Maximum Rated Values (TC=25°C unless otherwise specified)

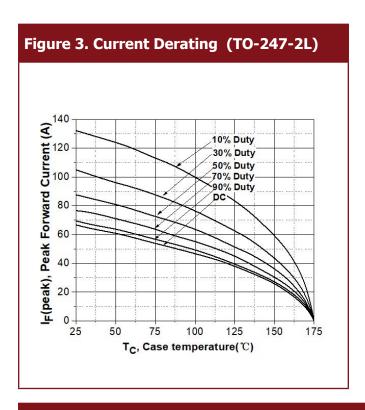
Symbol	Parameter	Value	Unit	Test Conditions	Note	
VRRM	Repetitive Peak Reverse Voltage	5000	V			
VR	DC Peak Reverse Voltage	5000	V			
	Coolings Francis Cooper	66/45		TC=25°C	Fig. 2	
IF	Continuous Forward Current (TO-247-2L/ceramic)	33/22	Α	TC=135°C	Fig. 3 Fig. 9	
	(10 217 2L/ceramic)	25/16		Tc=152°C	1 ig. 3	
IFRM	Donatitiva Dook Forward Curae Current	63	Α	TC=25°C, tP=10 ms, Half Sine Pulse		
ITKIVI	Repetitive Peak Forward Surge Current	53	A	TC=110°C, tP=10 ms, Half Sine Pulse		
IECM			Α	TC=25°C, tP=10 ms, Half Sine Pulse		
IFSM	Non-Repetitive Forward Surge Current	70		TC=110°C, tP=10 ms, Half Sine Pulse		
TE MAY	Non Departitive Femoral Course Coursest	1150	Α	TC=25°C, tP=10µs, Square Wave Pulse		
IF,MAX	Non-Repetitive Forward Surge Current	950		TC=110°C, tP=10µs, Square Wave Pulse		
Ptot	Power Dissipation	833/405	W	TC=25°C	Fig. 4 Fig.10	
	(TO-247-2L/ceramic)			TC=110°C		
TJ	Operating Temperature	-55 to +175	°C			
Tstg	Storage Temperature	-55 to +175	°C			
	TO-247 Mounting Torque	1 8.8	Nm Ibf-in	M3 Screw 6-32 Screw		

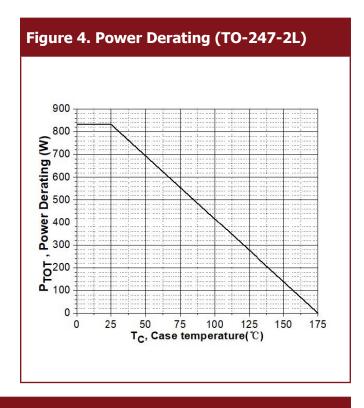
Electrical Characteristics (TJ=25°C)

Symbol	Parameter	Min.	Value Typ.		Unit	Test Conditions	Note
VF			1.4	1.9	V	IF=10A, TJ=25°C	Fig. 1
VF	Forward Voltage		2.4	3.2		IF=10A, TJ=175°C	
TD	ID Davies Command		0.6		mA	VR=5000V, TJ=25°C	Fig. 2
IR Reverse Current	Reverse Current		1.4			VR=5000V, TJ=175°C	
QC	Total Capacitive Charge		365		nC	VR=2000V, IF =10A di/ dt=200A/us, TJ=25°C	Fig. 5
			3880		pF	VR=0V, TJ=25°C, f=1MHz	Fig. 6
С	Total Capacitance		131			VR=1000V,TJ=25°C, f=1MHz	
			98			VR=2000V,TJ=25°C,f=1MHz	
EC	Capacitance Stored Energy		241		μJ	VR=0~2000 V	Fig. 7

Thermal Characteristics


Symbol	Parameter	Value	Unit	Note
ReJC	Thermal Resistance(Junction to Case)	0.18	°C/W	TO-247-2L Fig. 8





Typical Performance Characteristics

Figure 1. Forward Characteristics 35 30 F, Forward Current(A) 25 T_J= 25℃ 20 T_{.I}= 75°C T_.1= 125℃ 15 T_{.I}= 175°C 10 5 0.0 2.5 1.0 1.5 2.0 3.0 V_F, Forward Voltage (V)

500

0.1

Figure 5. Capacitance Charge Vs. Reverse Voltage

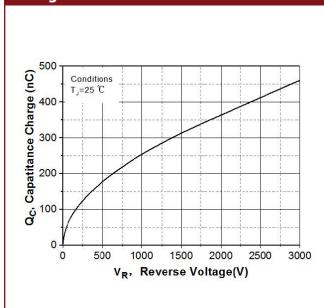
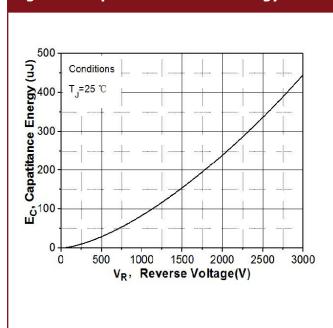
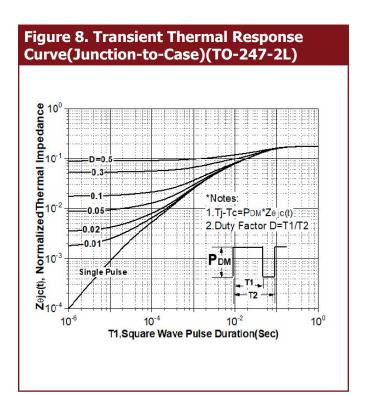


Figure 6. Capacitance Vs. Reverse Voltage

4000
3500
T_J=25°C
Ftest=1 MHz
V_{test}=25 mV

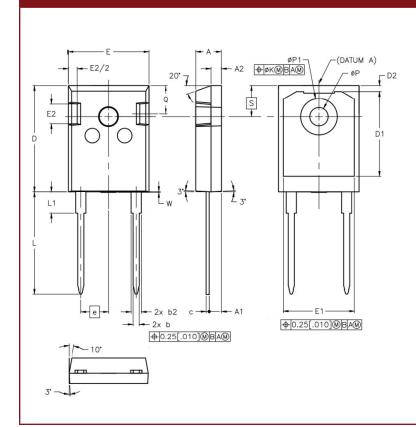

2500
T₁₀₀₀

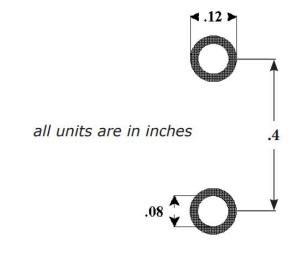

100

V_R, Reverse Voltage(V)

1000

Figure 7. Capacitance Stored Energy





Package Dimensions

DOC	Inches		Millimeters	
POS	Min	Max	Min	Max
Α	.190	.205	4.70	5.31
A1	.087	.102	2.21	2.59
A2	.059	.098	1.50	2.49
b	.039	.055	0.99	1.40
b2	.065	.094	1.65	2.39
С	.015	.035	0.38	0.89
D	.819	.845	20.80	21.46
D1	.515	1.77	13.08	-
D2	.020	.053	0.51	1.35
Е	.620	.640	15.49	16.26
E1	.530	1=	13.46	-
E2	.135	.157	3.43 3.99	
е	.2	14	5.44	
ØK	.0	10	0.	25
L	.780	.800	19.81	20.32
L1	-	.177	-	4.50
ØP	.140	.144	3.56	3.66
ØP1	.278	.291	7.06	7.39
Q	.212	.244	5.38 6.20	
S	.2	43	6.	17
W	-	.006	- 0.15	

Recommended Solder Pad Layout

Part Number	Package	Marking
QSD10HCS500U	TO-247-2L	Queensland Semi

Attention

- Specifications of any and all products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- We assumes no responsibility for equipment failures that result from using products at values that
 exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or
 other parameters) listed in products specifications of any and all Silicon products described or contained
 herein.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.