NV3600 **CMOS Output** Voltage Detector with High Withstand of SENSE Pin

FEATURES

- Input Voltage Range (Maximum Rating):
- 2.4 V to 6.0 V (7.0 V) SENSE Pin Voltage Range (Maximum Rating):
 - 0 V to 42.0 V (50.0 V)
- **Operating Temperature Range:** -40 °C to 105 °C
- Quiescent Current: Typ. 1.4 µA (VDD pin only) Max. 4.0 µA (Includes SENSE pin current)
- Detection Voltage: 3.3 V to 19.8 V (0.1 V increment) Accuracy: ± 0.6 % (T_a = 25 °C)
- ±1.5 % (-40 °C to 105 °C) Release Voltage: 4.5 V to 22.2 V (0.1 V increment)
 - ± 0.6 % (T_a = 25 °C)
 - ±1.5 % (-40 °C to 105 °C)
- Detection Delay Time: Typ. 40 µs Typ. 40 µs
- Release Delay Time:

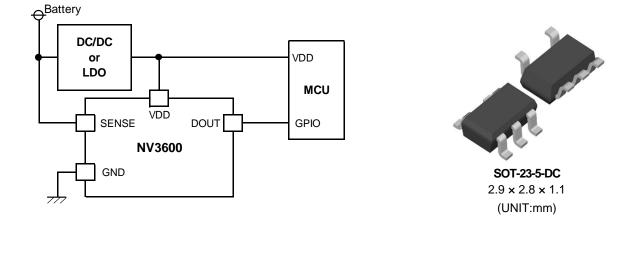
Accuracy:

Output Type: NMOS Open Drain or CMOS

GENERAL DESCRIPTION

The NV3600 is using a CMOS based voltage detector. The high withstand voltage of 42 V at the SENSE pin allows this device to directly monitor battery voltage. NMOS open drain output type or CMOS output type can be selected for the output type.

Therefore, external voltage divider resistors and pull-up resistors are no longer required, reducing the number of external components and the dark current of the system. In addition, the detection voltage and release voltage can be set separately, and the output logic at detection can also be selected to "Low" or "High".


Therefore, the optimum operation can be realized according to the system.

APPLICATIONS

- Power supply voltage supervisor in Factory Automation Equipment.
- Voltage supervisor in control devices like a PLCs.
- Power supply voltage supervisor in battery using devices like a mobile device.

TYPICAL APPLICATION CIRCUIT

PACKAGE

PRODUCT NAME INFORMATION

NV3600 aa bbb c dd e

Description of configuration

Composition	ltem	Description
aa	Package Code	DC: SOT-23-5-DC
bbb	Setting Voltage	Set detection voltage (V _{DET}) and release voltage (V _{REL}) The detection voltage can be set between 3.3 V to 19.8 V (0.1 V increment), The release voltage can be set between 4.5 V to 22.2 V (0.1 V increment). Hysteresis is 5 % or more (release voltage/detection voltage \geq 1.05) is recommended.
С	Version	Output type (NMOS open drain or CMOS) and Output Logic at Detection ("Low" or "High").
dd	Packing	Insert direction. Refer to the packing specifications.
е	Grade	Indicates the quality grade. S: Consumer

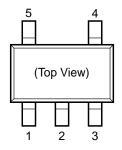
Version

С	Output Type	Output Logic at Detection
А	NMOS open drain	Low
С	NMOS open drain	High
E	CMOS	Low
G	CMOS	High

Grade

е	Applications	Operating Temperature Range	Test Temperature	
S	General-purpose and Consumer application	-40 °C to 105 °C	25 °C	

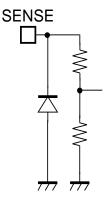
ORDER INFORMATION


PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	PLATING COMPOSITION	WEIGHT (mg)	QUANTITY PER REEL (pcs/reel)
NV3600 DC bbb c E1 S	SOT-23-5-DC	Yes	Yes	Sn	14.0	3000

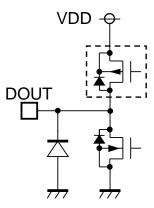
Click<u>here</u> for checking details.

Note: Contact our sales representatives for other voltages.

PIN DESCRIPTIONS



SOT-23-5-DC Pin Configuration


Pin No.	Pin Name	I/O	Description
1	SENSE		SENSE Voltage Input Pin
2	GND	-	Ground Pin
3	DOUT	0	Voltage Detection Output Pin NV3600DCxxxA/E: outputs "Low" reset signal when a voltage drops below the detection voltage. NV3600DCxxxC/G: outputs "High" reset signal when a voltage drops below the detection voltage. The "High" output level for CMOS output type is the VDD pin voltage.
4	NC	-	No Connection NC is electrically open. Please mount it on the board. However, it is recommended to make it electrically open to prevent short circuit with adjacent pins during mounting.
5	VDD	Power	Power Supply Input Pin

Please refer to "TYPICAL APPLICATION CIRCUIT" or "THEORY OF OPERATION" for details.

Internal Equivalent Circuit Diagram of Pin

SENSE pin internal equivalent circuit diagram

*Dotted frame corresponds to (NV3600DCxxxE/G)

DOUT pin internal equivalent circuit diagram

ABSOLUTE MAXIMUM RATINGS

	Symbol	Ratings	Unit
VDD Pin Voltage	V _{DD}	-0.3 to 7.0	V
SENSE Pin Voltage	VSENSE	-0.3 to 50.0	V
DOUT Pin Voltage	Vdout	-0.3 to 7.0	V
DOUT Pin Output Current	Іролт	30	mA
Junction Temperature Range *1	Tj	-40 to 125	°C
Storage Temperature Range	T _{stg}	-55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

^{*1} Calculate the power consumption of the IC from the operating conditions and calculate the junction temperature with the thermal resistance. Please refer to "<u>THERMAL CHARACTERISTICS</u>" for the thermal resistance under our measurement board conditions.

THERMAL CHARACTERISTICS

Parameter	Measurement Result	Unit	
Thermal Resistance (θja)	150	°C/W	
Thermal Characterization Parameter (ψjt)	51	0/00	

 θ ja: Junction-to-Ambient Thermal Resistance

wit: Junction-to-Top Thermal Characterization Parameter

For more information, click <u>here</u>.

ELECTROSTATIC DISCHARGE RATINGS

	Conditions	Protection Voltage
HBM	$C = 100 \text{ pF}, R = 1.5 \text{ k}\Omega$	±2000 V
CDM		±1000 V

ELECTROSTATIC DISCHARGE RATINGS

The electrostatic discharge test is done based on JESD47.

In the HBM method, ESD is applied using the power supply pin and GND pin as reference pins.

RECOMMENDED OPERATING CONDITIONS

	Symbol	Ratings	Unit
VDD Pin Voltage	V _{DD}	2.4 to 6.0	V
SENSE Pin Voltage	VSENSE	0 to 42.0	V
DOUT Pin Pull-up Voltage (NV3600DCxxxA/C)	Vup	0 to 6.0	V
Operating Temperature Range	Ta	-40 to 105	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 $V_{DD} = 6 V$ unless otherwise specified.

For NV3600DCxxxA/C (NMOS Open Drain Type), pull-up resistor (R_{UP}) = 100 k Ω , pull-up voltage (V_{UP}) = 5 V For parameter that do not describe the temperature condition, the MIN/MAX value under the condition of -40 °C \leq Ta \leq 105 °C is described.

Parameter	Symbol	Cond	ditions	MIN	TYP	MAX	Unit
Dotaction Valtage	VDET	Verver – Folling	$T_a = 25 \ ^\circ C$	×0.994	-	×1.006	V
Detection Voltage	VDET	$V_{SENSE} = Falling$	-40 °C ≤ Ta ≤ 105 °C	×0.985	-	×1.015	V
Release Voltage		V _{SENSE} = Rising	$T_a = 25 \ ^\circ C$	×0.994	-	×1.006	V
Release Vollage	VREL	VSENSE = RISING	-40 °C ≤ Ta ≤ 105 °C	×0.985	-	×1.015	V
Quiescent Current *1	lq	$V_{SENSE} = V_{REL} + 1 V$		-	1.4	2.7	μA
SENSE Pin Current	ISENSE	$V_{\text{SENSE}} = 12 \text{ V}$		0.2	-	1.3	μA
UVLO Detection Voltage ²	VUVLODET	$V_{DD} = Falling$	2.1	-	2.3	V	
UVLO Release Voltage*2	VUVLOREL	$V_{DD} = Rising$	2.2	-	2.4	V	
DOUT Pin Minimum	VDDL			_	_	1.7	V
Operating Voltage ^{*3}	VDDL		-	-	-	1.7	v
		DOUT = "High", VDD = 2.4 V	$V_{DOUT} = V_{DD} - 0.1 V$	0.10	-	-	mA
DOUT Pin Output Current	IDOUT	(NV3600DCxxxE/G)	$V_{DOUT} = V_{DD} - 0.3 V$	0.25	-	-	ШA
	IDOUT	DOUT = "Low",	V _{DOUT} = 0.1 V	0.40	-	-	
		$V_{DD} = 2.4 V$	$V_{DOUT} = 0.3 V$	1.00	-	-	mA
DOUT Pin Leakage Current ^{*4}	Idoutleak	V _{DOUT} = 6 V (NV3600DCxxxA/C)	-	-	0.3	μA	
Detection Delay Time *5	t DET	$V_{DD} = 2.4 \text{ V}$	-	40	90	μs	
Release Delay Time *6	t _{REL}	$V_{DD} = 2.4 V$		-	40	90	μs

All test items listed in Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C)

^{*1} VDD pin current.

^{*2} Due to circuit configuration, $V_{UVLODET} \ge V_{UVLOREL}$ does not hold. The hysteresis is Typ. 0.09 V.

^{*3} This minimum VDD voltage to prevent DOUT pin output from becoming indefinite.

Judgment conditions are as follows.

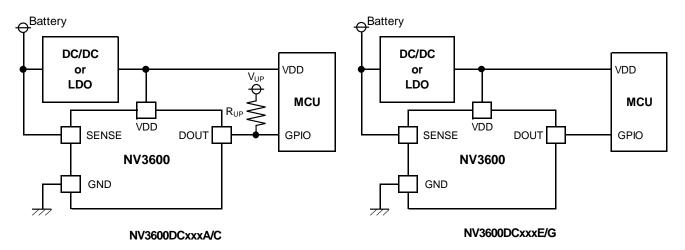
- NV3600DCxxxA/E ("Low" output at detection): $V_{DOUT} \le 0.1 \text{ V}$
- NV3600DCxxxC ("High" output at detection, NMOS open drain): V_{DOUT} \geq V_{UP}- 0.1 V

NV3600DCxxxG ("High" output at detection, CMOS): V_{DOUT} ≥ V_{DD} - 0.1 V

^{*4} Leakage current when the NMOS output transistor is OFF.

^{*5} For detailed conditions of the detection delay time, refer to "*Detection Delay Time*".

^{*6} For detailed conditions of the release delay time, refer to "*Release Delay Time*".



ELECTRICAL CHARACTERISTICS

										[Unit: V]	
			VDET			VREL					
PRODUCT NAME	T _a = 25 °C			C -40 °C ≤ Ta ≤ 105 °C			$T_a = 25 \ ^{\circ}C$			-40 °C ≤ Ta ≤ 105 °C	
	MIN	TYP	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
NV3600DC001 xxxx	3.280	3.3	3.320	3.250	3.350	4.473	4.5	4.527	4.432	4.568	
NV3600DC002 xxxx	19.681	19.8	19.919	19.503	20.097	22.066	22.2	22.334	21.867	22.533	
NV3600DC003 xxxx	9.940	10.0	10.060	9.850	10.150	10.934	11.0	11.066	10.835	11.165	
NV3600DC004 xxxx	5.069	5.1	5.131	5.023	5.177	7.554	7.6	7.646	7.486	7.714	
NV3600DC005 xxxx	4.970	5.0	5.030	4.925	5.075	5.765	5.8	5.835	5.713	5.887	

All test items listed in Electrical Characteristics are done under the pulse load condition ($T_j \approx T_a = 25^{\circ}C$)

TYPICAL APPLICATION CIRCUIT

EXTERMAL COMPONENTS

Pull-up Resistor (Rup)

NV3600DCxxxA/C: DOUT pin voltage depends on the external pull-up resistor (R_{UP}). Refer to the next formula and choose an appropriate value for the resistance.

(1) Lower limit of the pull-up resistor (R_{UP})

"Low" voltage level (VDOUT.) of DOUT is determined by on resistance (RON) of NMOS output transistor, pull-up resistor (RUP), and pull-up voltage (VUP).

 $V_{DOUTL} = R_{ON} / (R_{ON} + R_{UP}) \times V_{UP}$

The maximum value of R_{ON} can be calculated by the following with using the value of "DOUT pin Output Current" of Electrical Characteristics Table. ($V_{DOUTL} \le 0.3 V$)

 R_{ON} (MAX) = 0.3 V / 1 mA = 0.3 k Ω

To obtain the desirable "Low" voltage level (VDUTL), the minimum value of RUP should satisfy the next equation.

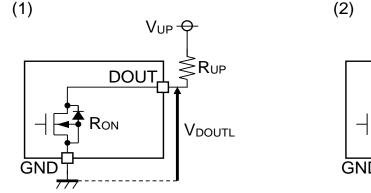
RUP ≥ (VUP - VDOUTL) / VDOUTL × RON

* If R_{UP} is small, the quiescent current under the condition of DOUT "Low" output ($\approx V_{UP}/R_{UP}$) may increase. (The recommendation value of the pull-up resistor is 1 k Ω or more.)

(2) Higher limit of the pull-up resistor (R_{UP})

"High" voltage level (VDOUTH) of DOUT is determined by DOUT pin leakage current (IDOUTLEAK) and pull-up resistor (RUP) and pull-up voltage (VUP).

VDOUTH = VUP - IDOUTLEAK × RUP

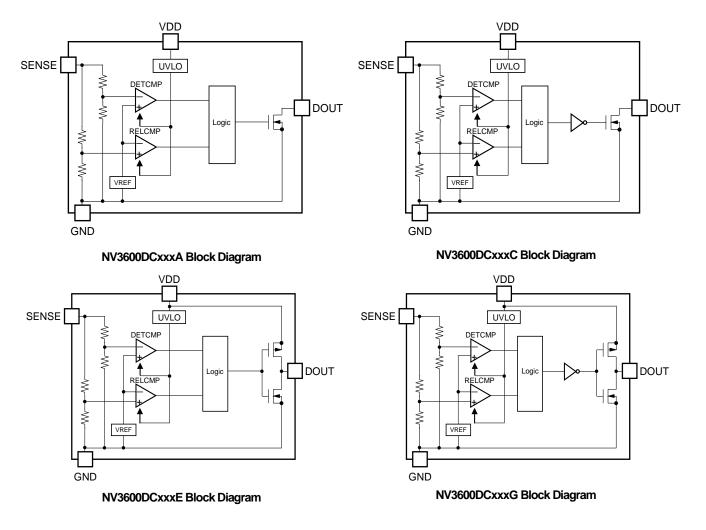

The maximum value of $I_{DOUTLEAK}$ is specified in the Electrical Characteristics Table. (= 0.3 μ A) To satisfy the desirable "High" voltage, the higher limit of R_{UP} should satisfy the next equation.

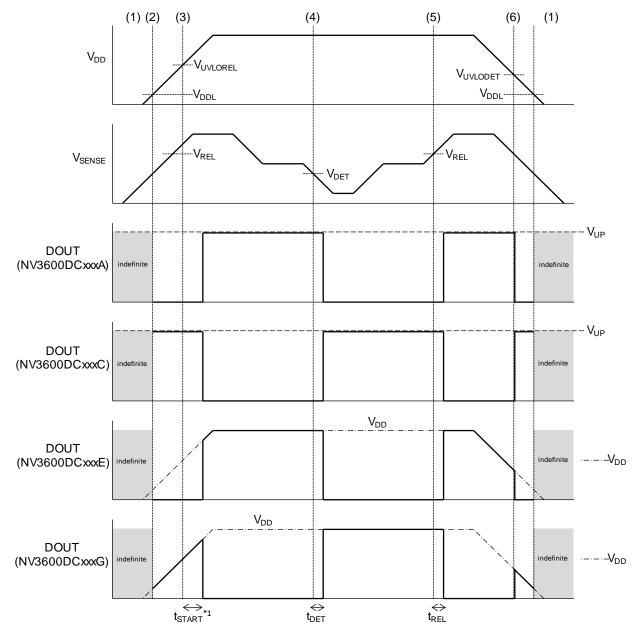
 $R_{UP} \leq (V_{UP} - V_{DOUTH}) / I_{DOUTLEAK}$

(Ex.)

 V_{UP} = 5 V, The target DOUT pin voltage "Low" = 0.3 V, "High" = 4.7 V By the equation (1), R_{UP} ≥ (5 V - 0.3 V) / 0.3 V × 0.3 kΩ = 4.7 kΩ By the equation (2), R_{UP} ≤ (5 V - 4.7 V) / 0.3 µA = 1 MΩ

Therefore, appropriate value range of pull-up resistor is from 4.7 k\Omega to 1 M\Omega.




NV3600 series

BLOCK DIAGRAMS

THEORY OF OPERATION

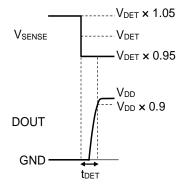
During VDD pin power-up, when V_DD exceeds the UVLO release voltage, if V_SENSE \geq V_REL.

- (1) V_{DD} is equal or lower than DOUT pin minimum operating voltage (V_{DDL}), DOUT output is not guaranteed. "(Indefinite)"
- (2) V_{DD} exceeds V_{DDL}, DOUT output asserts "detected condition".
- (3) V_{DD} exceeds UVLO release voltage (V_{UVLOREL}), if SENSE pin voltage (V_{SENSE}) is equal or more than the release voltage (V_{REL}), after the start-up time^{*1} (t_{START}: Max. 1 ms), DOUT output asserts "released condition". Even though V_{SENSE} falls, unless otherwise the voltage is less than the detection voltage (V_{DET}), "released condition" is maintained.
- (4) Further V_{SENSE} falls and when it becomes equal or lower than V_{DET}, after the detection delay time (t_{DET}: Typ. 40 μs), DOUT output asserts "detected condition".
- (5) VSENSE rises and exceeds VREL, after the release delay time (tREL: Typ. 40 µs), DOUT output asserts "released condition".
- (6) V_{DD} falls and when it becomes equal or lower than the UVLO detection voltage (V_{UVLODET}), DOUT output asserts "detected condition".
 ^{*1} Start-up time (t_{START}) is the total time of UVLO release delay time and release delay time.

DETECTION DELAY TIME (tDET)

Detection delay time (t_{DET}) means the period from the falling edge of the pulse between $V_{DET} \times 1.05$ and $V_{DET} \times 0.95$ for SENSE pin to the designated conditions shown below.

NV3600DCxxxA: Until DOUT pin voltage reaches $V_{UP} \times 0.1$. (V_{UP} is pull-up voltage of DOUT)


NV3600DCxxxE: Until DOUT pin voltage reaches $V_{DD} \times 0.1$.

NV3600DCxxxG: Until DOUT pin voltage reaches $V_{DD} \times 0.9$.

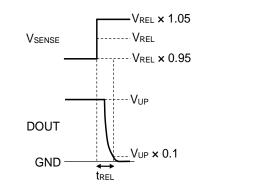
As for NV3600DCxxxC, the delay time may be longer than expected by the effect of the parasitic capacitance of PCB and pull-up resistor.

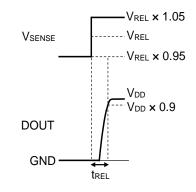
NV3600DCxxxA

NV3600DCxxxG

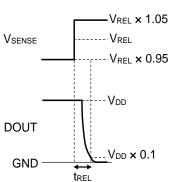
NV3600DCxxxE

RELEASE DELAY TIME (tREL)


Release delay time (t_{REL}) is the period from when the rising edge of the pulse between $V_{REL} \times 0.95$ and $V_{REL} \times 1.05$ for SENSE pin to the designated conditions shown below.


NV3600DCxxxC: Until DOUT pin voltage reaches VuP × 0.1. (VuP is pull-up voltage of DOUT)

NV3600DCxxxE: Until DOUT pin voltage reaches V_{DD} × 0.9.


NV3600DCxxxG: Until DOUT pin voltage reaches $V_{DD} \times 0.1$.

As for NV3600DCxxxA, the delay time may be longer than expected by the effect of the parasitic capacitance of PCB and pull-up resistor.

NV3600DCxxxC

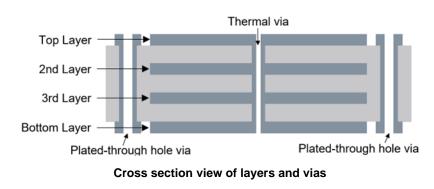
NV3600DCxxxG

NV3600DCxxxE

THERMAL CHARACTERISTICS (SOT-23-DC)

Thermal characteristics depend on mounting conditions. The thermal characteristics below are the results of measurements under measurement conditions determined by our company with reference to JEDEC STD. (JESD51).

Measurement Result

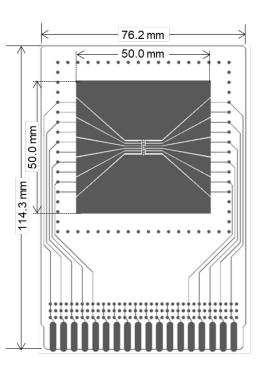

ltem	Measurement Result
Thermal Resistance (θ ja)	150 °C/W
Thermal Characterization Parameter (ψjt)	51 °C/W

: Junction-to-Ambient Thermal Resistance θia

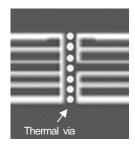
: Junction-to-Top Thermal Characterization Parameter ψjt

Measurement Conditions

ltem		Specification	
Measurement Condition		Mounting on Board (Still Air)	
Board material		FR-4	
Board size		76.2 mm × 114.3 mm × t 0.8 mm	
	1	50 mm × 50 mm (coverage rate 95%),	
		t 0.040 mm	
	2	50 mm × 50 mm (coverage rate 100%),	
Copper foil layer		t 0.035 mm	
	3	50 mm × 50 mm (coverage rate 100%),	
		t 0.035 mm	
	4	50 mm × 50 mm (coverage rate 100%),	
		t 0.040 mm	
Thermal vias		φ 0.3 mm × 7 pcs	


CALCULATION METHOD OF JUNCTION TEMPERATURE

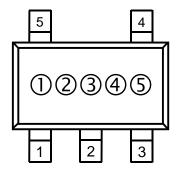
The junction temperature (Tj) can be calculated from the following formula.


Ρ

Where:

: Ambient temperature Та Tc (top) : Package mark side center temperature : Power consumption under user's conditions

Measurement Board Pattern



Enlarged view of IC mounting area

MARKING SPECIFICATION

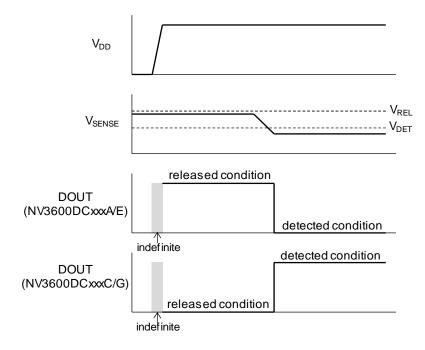
- 103 : Product Code (Abbreviation)
- @ ⑤ : Lot Number ··· Alphanumeric Serial Number

SOT-23-5-DC Marking

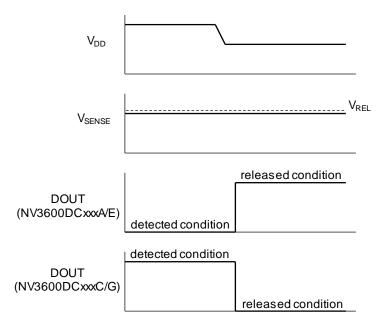
NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

Marking List


Product Code	Detection Voltage (VDET) [V]	Release Voltage (VREL) [V]	0 2 3
NV3600DC001A	3.3	4.5	1 A 0
NV3600DC002A	19.8	22.2	1 A 1
NV3600DC003A	10.0	11.0	1 A 2
NV3600DC004A	5.1	7.6	1 A 3
NV3600DC005A	5.0	5.8	1 A 4
NV3600DC001C	3.3	4.5	1 B 0
NV3600DC002C	19.8	22.2	1 B 1
NV3600DC003C	10.0	11.0	1 B 2
NV3600DC004C	5.1	7.6	1 B 3
NV3600DC005C	5.0	5.8	1 B 4
NV3600DC001E	3.3	4.5	1 C 0
NV3600DC002E	19.8	22.2	1 C 1
NV3600DC003E	10.0	11.0	1 C 2
NV3600DC004E	5.1	7.6	1 C 3
NV3600DC005E	5.0	5.8	1 C 4
NV3600DC001G	3.3	4.5	1 D 0
NV3600DC002G	19.8	22.2	1 D 1
NV3600DC003G	10.0	11.0	1 D 2
NV3600DC004G	5.1	7.6	1 D 3
NV3600DC005G	5.0	5.8	1 D 4

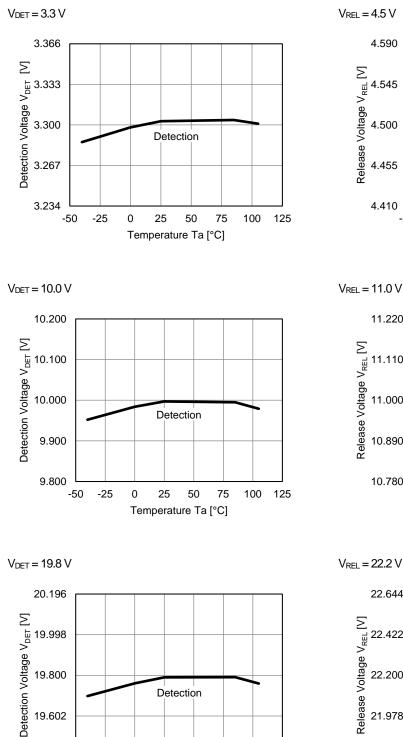
APPLICATIONS NOTES

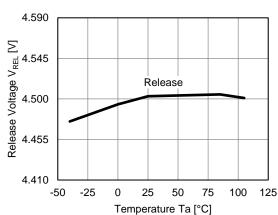

Power-up Considerations

When SENSE pin voltage (V_{SENSE}) is just a little lower than the release voltage, if VDD pin voltage (V_{DD}) power up drastically, released condition may appear. In that case, once SENSE pin should be set lower than the detection voltage to realize "detected condition". If start-up from the "detected condition" is necessary, put a capacitor (C_{IN}) between VDD pin and GND pin to make rising speed of V_{DD} slow. In the case of $V_{SENSE} = V_{REL} \times 0.99$, we recommend the rising time of V_{DD} is 100 µs or more. (V_{DD} : from 0 V to 6 V).

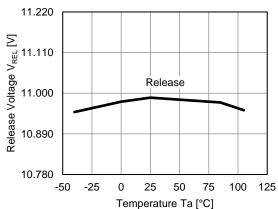
Power-down Considerations

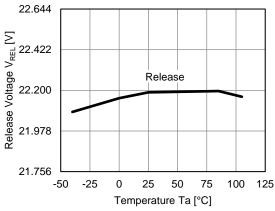
When SENSE pin voltage (V_{SENSE}) is just a little lower than the release voltage, if VDD pin voltage (V_{DD}) power down drastically, released condition may appear. In that case, put a capacitor (C_{IN}) between VDD pin and GND pin to make falling speed of V_{DD} slow. In the case of $V_{SENSE} = V_{REL} \times 0.99$, we recommend the falling slew rate of V_{DD} is slower than -10 mV/µs.




TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.


V_{DD} = 3.3 V, NV3600DCxxxE, Ta = 25 °C unless otherwise noted.


1) Detection Voltage vs Temperature

Release Voltage vs Temperature

19.602

19.404

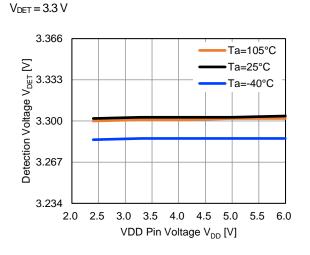
-50

-25

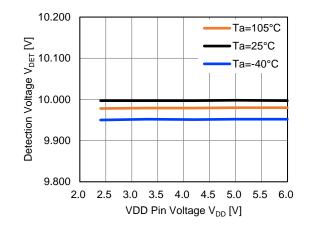
0

25

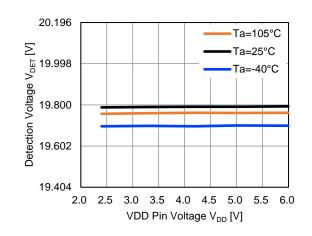
Temperature Ta [°C]


50

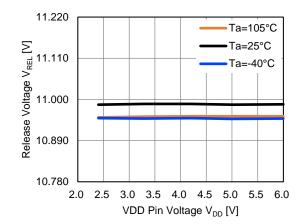
75

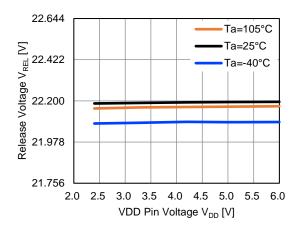

100

125

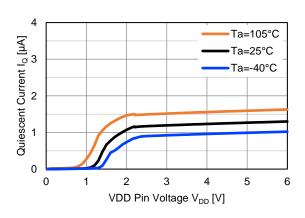

2) Detection Voltage vs VDD Pin Voltage

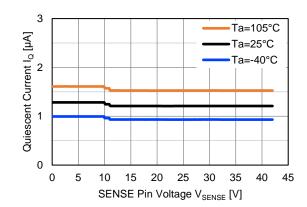
V_{DET} = 10.0 V

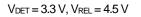


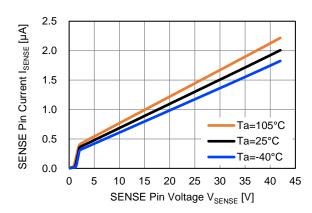

Release Voltage vs VDD Pin Voltage

 $V_{REL} = 11.0 V$

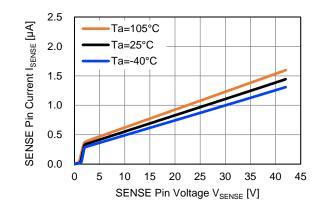



3) Quiescent Current vs VDD Pin Voltage

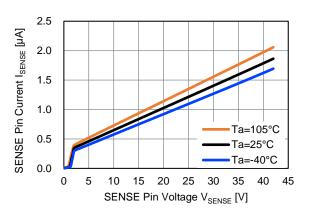

 $V_{DET} = 10.0 V$, $V_{REL} = 11.0 V$, $V_{SENSE} = V_{REL} + 1V$


4) Quiescent Current vs SENSE Pin Voltage

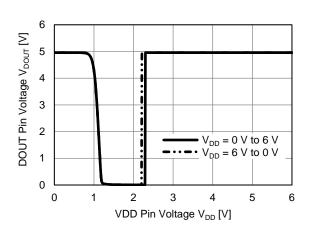
 $V_{DET} = 10.0 V, V_{REL} = 11.0 V$

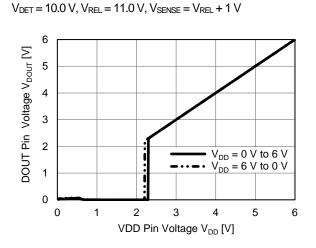


5) SENSE Pin Current vs SENSE Pin Voltage

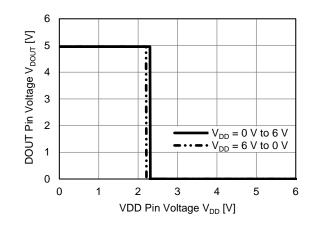


 $V_{DET} = 19.8 V, V_{REL} = 22.2 V$

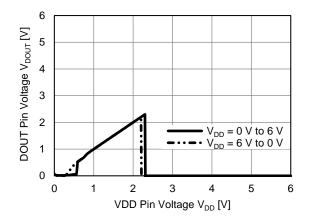

 $V_{DET} = 10.0 \text{ V}, V_{REL} = 11.0 \text{ V}$


NV3600 series

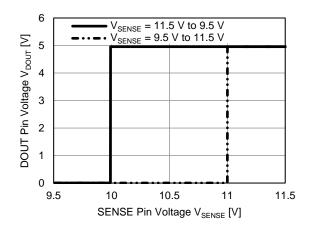
6) DOUT Pin Voltage vs VDD Pin Voltage NV3600DCxxxA $V_{UP} = 5.0 \text{ V}, \text{ R}_{UP} = 100 \text{ k}\Omega$


VDET = 10.0 V, VREL = 11.0 V, VSENSE = VREL + 1 V

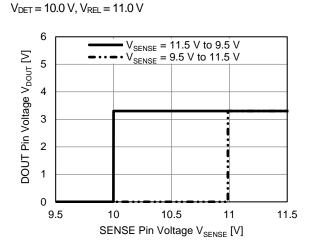
NV3600DCxxxE



NV3600DCxxxC $V_{UP} = 5.0 \text{ V}, \text{ R}_{UP} = 100 \text{ k}\Omega$ $V_{DET} = 10.0 \text{ V}, \text{ V}_{REL} = 11.0 \text{ V}, \text{ V}_{SENSE} = \text{ V}_{REL} + 1 \text{ V}$

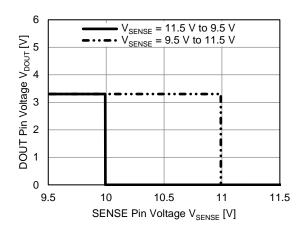

NV3600DCxxxG

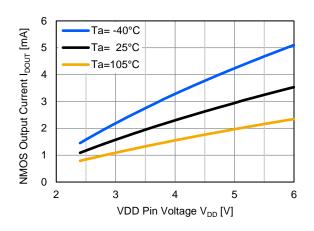
V_{DET} = 10.0 V, V_{REL} = 11.0 V, V_{SENSE} = V_{REL} + 1 V



7) DOUT Pin Voltage vs SENSE Pin Voltage NV3600DCxxxA $V_{UP} = 5.0 \text{ V}, \text{ R}_{UP} = 100 \text{ k}\Omega$

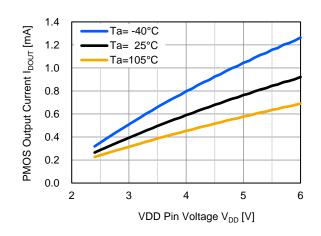
 $V_{DET} = 10.0 V, V_{REL} = 11.0 V$

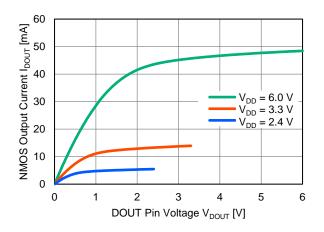

NV3600DCxxxE



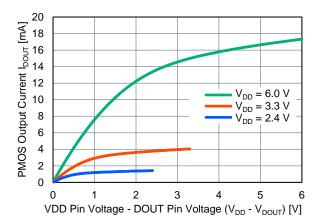
NV3600DCxxxC $V_{UP} = 5.0 \text{ V}, \text{ R}_{UP} = 100 \text{ k}\Omega$ VDET = 10.0 V, VREL = 11.0 V 6 $\overline{V}_{SENSE} = 11.5 \text{ V to } 9.5 \text{ V}$ $V_{SENSE} = 9.5 \text{ V to } 11.5 \text{ V}$ DOUT Pin Voltage V_{DOUT} [V] 5 4 3 2 1 0 9.5 10 10.5 11 11.5 SENSE Pin Voltage V_{SENSE} [V]

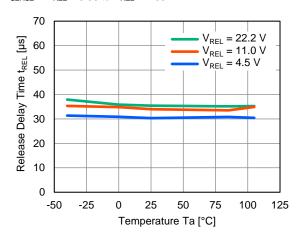
NV3600DCxxxG

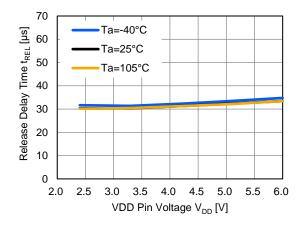

 $V_{DET} = 10.0 \text{ V}, V_{REL} = 11.0 \text{ V}$

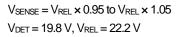


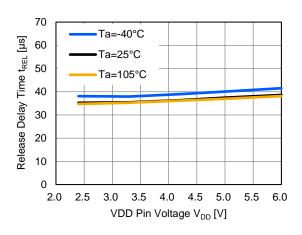
8) NMOS Output Current vs VDD Pin Voltage VDET = 10.0 V, VREL = 11.0 V, VSENSE = 0 V, VDOUT = 0.1 V

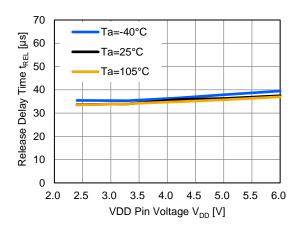

9) PMOS Output Current vs VDD Pin Voltage VDET = 10.0 V, VREL = 11.0 V, VSENSE = 24 V, VDOUT = VDD - 0.1 V

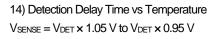

10) NMOS Output Current vs DOUT Pin Voltage VDET = 10.0 V, VREL = 11.0 V, VSENSE = 0 V, VDOUT = 0 V to VDD

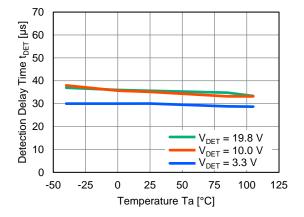

11) PMOS Output Current vs VDD Pin Voltage - DOUT Pin Voltage VDET = 10.0 V, VREL = 11.0 V, VSENSE = 24 V, VDOUT = VDD to 0 V



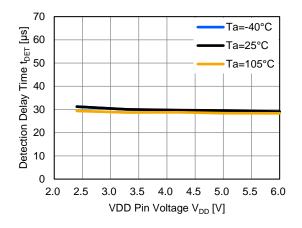

12) Release Delay Time vs Temperature VSENSE = $V_{REL} \times 0.95$ to $V_{REL} \times 1.05$

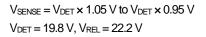

13) Release Delay Time vs VDD Pin Voltage V_{SENSE} = V_{REL} \times 0.95 to V_{REL} \times 1.05 V_{DET} = 3.3 V, V_{REL} = 4.5 V

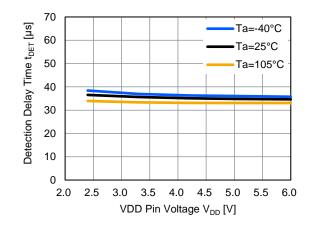




 $V_{SENSE} = V_{REL} \times 0.95 \text{ to } V_{REL} \times 1.05$ $V_{DET} = 10.0 \text{ V}, V_{REL} = 11.0 \text{ V}$

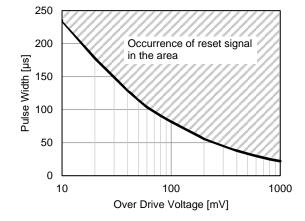


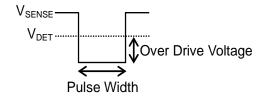




15) Detection Delay Time vs VDD Pin Voltage VSENSE = VDET \times 1.05 V to VDET \times 0.95 V

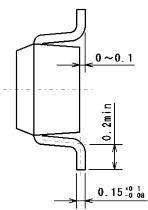

 $V_{DET} = 3.3 V, V_{REL} = 4.5 V$

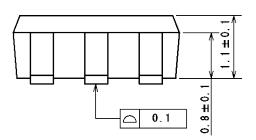




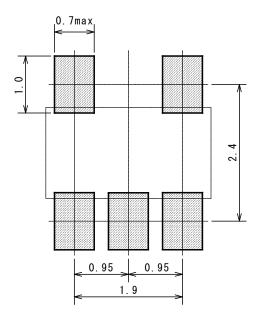
 $V_{SENSE} = V_{DET} \times 1.05 \text{ V to } V_{DET} \times 0.95 \text{ V}$ $V_{DET} = 10.0 \text{ V}, \text{ V}_{REL} = 11.0 \text{ V}$

16) SENSE Pin Pulse Width vs Over Drive Voltage $V_{SENSE} = V_{REL} + 1 V \Leftrightarrow V_{DET}$ - Over Drive Voltage $V_{DET} = 10.0 V, V_{REL} = 11.0 V$




SOT-23-5-DC

PACKAGE DIMENSIONS

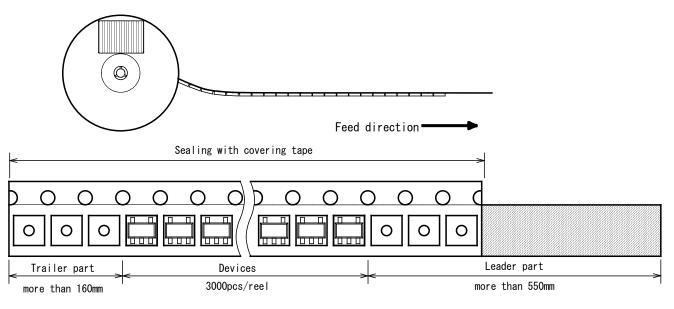

 2.9 ± 0.2

 $\begin{array}{c|c}
1.9 \pm 0.2 \\
\hline
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$

■ EXAMPLE OF SOLDER PADS DIMENSIONS

PI-SOT-23-5-DC-01-E-A

UNIT: mm


SOT-23-5-DC

PACKING SPEC

(1) Taping dimensions / Insert direction

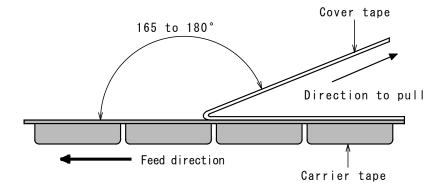
 75 ± 0.1 1.5 $^{+0.1}_{0}$ Insert direction 2.0 ± 0.05 0.3 ± 0.1 4.0 \pm 0.1 (E1) 05 3.5±0. ŝ .0 ± 0. П П 2 ± 0. . 00 °., 3.3 ± 0.1 1.1 ± 0.1 4.0 ± 0.1 2.Omax

(2) Taping state

PI-SOT-23-5-DC-01-E-A

UNIT: mm

SOT-23-5-DC

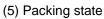

(3) Reel dimensions

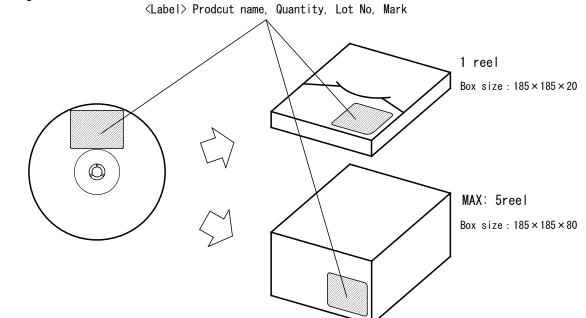
 2 ± 0.5 2 ± 0.5 2 ± 0.8 13 ± 0.2 9 ± 1.0 9 ± 1.0

(4) Peeling strength

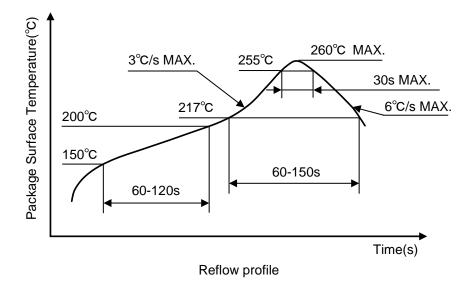
Peeling strength of cover tape

• Peeling angle165 to 180° degrees to the taped surface.• Peeling speed300mm/min• Peeling strength0.1 to 1.0N





PI-SOT-23-5-DC-01-E-A


SOT-23-5-DC

PI-SOT-23-5-DC-01-E-A

HEAT-RESISTANCE PROFILES

Datasheet

REVISION HISTORY

Date	Revision	Contents of Changes
September 08, 2023	1.0	Initial release
February 05, 2024 1.1	4.4	Updated "SOT-23-5-DC Package Information" to the latest version.
	(PI-SOT-23-5-DC-E-E \rightarrow PI-SOT-23-5-DC-E-F)	
May 10,2024 1		• 005A/C/E/G lineup added.
		THERMAL CHARACTERISTICS : Format was changed.
	1.2	(The specification is no change.)
		• Package Information's control number : PI-SOT-23-5-DC-E-F \rightarrow PI-SOT-23-5-DC-01-E-A
		(The specification is no change.)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

- Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
- 8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/