

Evaluates: MAX22212

MAX22212 Evaluation Kit

General Description

The MAX22212 evaluation kit (EV kit) provides a proven design to evaluate the +36V, 7.6A single H-bridge MAX22212 motor driver. The MAX22212 drives a single brushed DC motor. The MAX22212 IC integrates very low impedance FETs in a single H-bridge configuration with a typical R_{ON} (high-side + low-side) of 0.125 Ω . The EV kit features headers, test points, and terminal blocks to provide an interface to the MAX22212 motor driver. The MAX22212's integrated current sense output ISENA and ISENB can be monitored using test points or connected to an external ADC using header J4. The MAX22212 features embedded current drive regulation (CDR) with adjustable chopping current (IFS) and adjustable current limit off time (t_{OFF}). The MAX22212 EV kit operates from an input voltage of +4.5V to +36V (V_M). An on-board +3.3V regulator U2 (MAX6765TTSD2+) provides a regulated +3.3V to drive the MAX22212 logic inputs. Terminal blocks J1 and J5 are installed to provide an interface for the high voltage, high current V_{M} inputs, and motor driver outputs OUT1 and OUT2 .

Image: Second Condition Image: Second Condition

MAX22212 EV Kit Board Photo

Features

- Easy Evaluation of the MAX22212
- Adjustable t_{OFF} Time Using On-Board Potentiometer
- Configurable Current Drive Regulation (CDR)
- On-Board +3.3V Regulator to Drive the MAX22212 Logic Inputs
- Test Points and Headers to Interface with the MAX22212 Logic Inputs and Current Sense Outputs
- Fully Assembled and Tested
- Proven PCB Layout

Ordering Information appears at end of data sheet.

© 2024 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2024 Analog Devices, Inc. All rights reserved.

^{319-101044;} Rev 0; 2/24

Quick Start

Required Equipment

- MAX22212 EV kit
- +36V DC, 3.8A power supply
- 100kHz square-wave generator (optional)
- Brushed DC motor or load

Procedure

The EV kit is fully assembled and tested. Use the following steps to verify board operation:

- As with all motor drive applications, stopping or braking the motor can cause a back EMF (BEMF) current and voltage spike. At high supply voltages (+36V), this can cause the supply to rise above the absolute maximum allowable voltage to the supply pins of a motor drive IC. It is highly recommended that the power supply be clamped appropriately to avoid damage to the motor driver IC.
- 2) Verify that shunts are installed in the default position.
- 3) Connect a +36V supply to the V_M and adjust the V_M voltage to the desired operating voltage.
- Adjust the I_{TRIP} chopping current according to the position of shunt on header J2 to accommodate the load requirement.
- 5) Adjust the t_{OFF} time using potentiometer R9 if this is being observed.
- 6) Apply a PWM signal to the DIN1/DIN2 inputs as desired to drive the load. For example, a +3.3V to 0V, 20kHz PWM signal with a 20% duty cycle can be used to drive a 24V brushed DC motor connected to output A. To drive it in the forward direction, DIN1 would be driven to logic LOW (GND), and the PWM signal would be applied to DIN2.

Detailed Description of Hardware

Enable Controls

The MAX22212 enable pin EN is controlled by installing a shunt across pins 1–2 on header J3.

On-Board +3.3V Control

The MAX22212 features an on-board +3.3V LDO that operates from +4.5V to +36V. The input voltage to the LDO is supplied by the V_M voltage. To use the on-board LDO, install a shunt in position 2–3 of header J18. An external +3.3V supply can be used, which can be connected across test point $3V3_EXT$ and any GND test point. In this case, a shunt should be installed in positions 1–2 of header J18.

PWM Controls

The MAX22212 H-bridge can be individually PWM controlled by three logic inputs (DIN1, DIN2, and EN) using pins 2, 4, and 5 of header J3 or applied to the EN, DIN1, and DIN2 test points. <u>Table 1</u> describes the behavior of the full H-bridge output pins OUT1_ and OUT2_ with respect to the input signals EN, DIN1, and DIN2. The MAX22212's outputs OUT1A and OUT1B are connected on the board and routed as a single trace (OUT1_) to the J5 output terminal block. Similarly, the MAX22212's outputs OUT2A and OUT2B are connected on the board and routed as a single output (OUT2_) to the J5 output terminal block. PWM techniques can be used to control the output duty cycle and implement motor speed control.

Current Regulation Controls

The MAX22212 features embedded current drive regulation (CDR). The bridge current is sensed by a nondissipative integrated current sensing circuit (ICS), and it is then compared with the threshold current (IFS). As soon as the bridge current exceeds the threshold, the device enforces the decay for a fixed OFF-time (t_{OFF}).

		•		<u> </u>		
EN	DIN1	DIN2_	OUT1_	OUT2_	DESCRIPTION	
0	Х	Х	High-Z	High-Z	H-bridge disabled. High impedance (High-Z)	
1	0	0	L	L	Brake Low; Slow decay	
1	1	0	Н	L	L Reverse (Current from OUT1_ to OUT2_)	
1	0	1	L	Н	H Forward (Current from OUT2_ to OUT1_)	
1	1	1	Н	Н	Brake High; Slow decay	

Table 1. Full-Bridge EN_, DIN1_, DIN2_, Truth Table

Once t_{OFF} has elapsed, the driver is re-enabled for the next PWM cycle. t_{OFF} can be adjusted by connecting a resistor from the ROFF pin to GND. Potentiometer R9 and resistor R2 can be used to adjust the ROFF resistance from $15k\Omega$ to $215k\Omega$ and hence the t_{OFF} time. The following equation shows the relationship between t_{OFF} and R_{ROFF}:

Where K_{TOFF} = 0.667µs/k Ω . t_{OFF} can be programmed in a range from 10µs to 80µs.

The chopping current threshold (IFS) can be configured by connecting a resistor between the REF pin and GND. The MAX22212 EV kit has two $20k\Omega$ resistors installed in series from the REF pin (R3 and R5) to GND. A shunt can be installed on header J2 to short one of the $20k\Omega$ series resistors to reduce the resistance from the REF pin to GND from $40k\Omega$ to $20k\Omega$. The following equation describes the relationship between I_{FS} and R_{REF}, where K_{IFS} = 72KV if HFS = logic low and 36.8KV if HFS = logic high.

$$I_{FS} = \frac{K_{IFS} (KV)}{R_{REF} (k\Omega)}$$

Using header J2 and pins 19 and 20 of header J3 (HFS input), the I_{FS} current for the H-bridge can be configured from 0.92A or 3.6A.

Other I_{FS} current levels can be obtained using the ISET1-ISET4 pins to scale the I_{FS} current. <u>Table 2</u> and <u>Table 3</u> describe the relationship between I_{FS} and header J2 and header J3, pins 19-20 shunt positions.

Table 2. IFS Chopping Current Control

HEADE <u>R</u>	SHUNT POSITION	R _{REF} VALUE	OUTPUT CHOPPING CURRENT I _{TRIP} (A)	
J2 (HFS = 0, no shunt across	no shunt across Not Installed		Output chopping current set to 1.8A	
pins 19 and 20 of J3)	1-2	20kΩ	Output chopping current set to 3.6A	
J2 (HFS = 1, shunt installed	Not Installed	40kΩ	Output chopping current set to 0.92A	
across pins 19 and 20 of J3)	1-2	20kΩ	Output chopping current set to 1.84A	

Table 3. IFS Chopping Current Control Scaling Using ISET_

ISET4	ISET3	ISET2	ISET1	OUTPUT CHOPPING CURRENT (% OF I _{FS})
<u>0</u>	0	0	0	100
0	0	0	1	99.2
0	0	1	0	97.7
0	0	1	1	95.3
0	1	0	0	91.4
0	1	0	1	86.7
0	1	1	0	81.3
0	1	1	1	74.2
1	0	0	0	67.2
1	0	0	1	58.6
1	0	1	0	50
1	0	1	1	40.6
1	1	0	0	31.3
1	1	0	1	21.1
1	1	1	0	10.2
1	1	1	1	0

Current Sense Output (CSO)

Currents proportional to the internally sensed motor current are output to pins ISENA and ISENB for the H-bridge A and B, respectively. The current is sensed when one of the two low-side FETs sinks the output current, and it is, therefore, meaningful both during the energizing (t_{ON}) phase and during the slow decay phase (Brake). During the blanking time, the ISEN current is held constant. In fast decay, the current is not monitored and ISEN outputs a zero current. The following equation shows the relationship between the current sourced at ISEN = ISENA + ISENB and the motor current, where ISENA and ISENB are shorted together on the board and then tied to GND with a precision $3k\Omega$ resistor.

$$I_{ISEN}(A) = \frac{I_{OUT}(A)}{K_{ISEN}}$$

 K_{ISEN} represents the current scaling factor between the output current and its replica at pin ISEN. KISEN is typically 7.5 KA/A when HFS = 0.

The MAX22212's ISENA and ISENB outputs are first shorted together on the board and then connected to GND through a $3k\Omega$ resistor to report the total sensed load current on the low-side FETs.

Table 4. Decay Modes

CDR Open-Drain Outputs

The CDR pin is an active-low open-drain output which is asserted during the fixed decay time interval (t_{OFF}) enforced by the current-drive regulation loop. In this way, the external controller can monitor whether the integrated current loop has taken control of the driver, which overwrites the status of the PWM logic inputs (DIN1 and DIN2). The CDR signal can be used by the external controller for a variety of reasons and provides information about the actual load during current regulation. The CDR pin on the MAX22212 EV kit has a 1k Ω pullup to +3.3V installed. The CDR pin can be monitored either using the CDR test point or pin 3 of header J4.

Decay Mode Controls

Two logic input pins allow the user to set the decay mode during t_{OFF} . The MAX22212 supports slow, fast, and mixed-decay mode. The decay mode can be controlled by driving the DECAY2 and DECAY1 pins to GND or +3.3V. Table 4 describes the decay mode truth table and the behavior of the DECAY_ inputs, which can be configured using pins 7–8 and 9–10 of header J3 of the MAX22212 EV kit.

Fault Reporting

The MAX22212 reports overcurrent and undervoltage faults by asserting (driving to GND) the FAULT pin. The MAX22212 EV kit pulls the FAULT pin to +3.3V via an on-board LED (D1) and 1.4k resistor. LED D1 will be illuminated during fault conditions, and the user should refer to the IC data sheet for the overcurrent protection (OCP) and undervoltage-lockout protection (UVLO) conditions and thresholds.

DECAY HEADER DECAY2	DECAY HEADER DECAY1	DECAY MODE
0	0	Slow
0	1	Mixed 30% Fast/70% Slow
1	0	Mixed 60% Fast/40% Slow
1	1	Fast

Default Header Positions

Table 5 describes the default position of the headers to operate the MAX22212 EV kit as described in the *Quick Start* procedure section.

Table 5. Default Header Positions

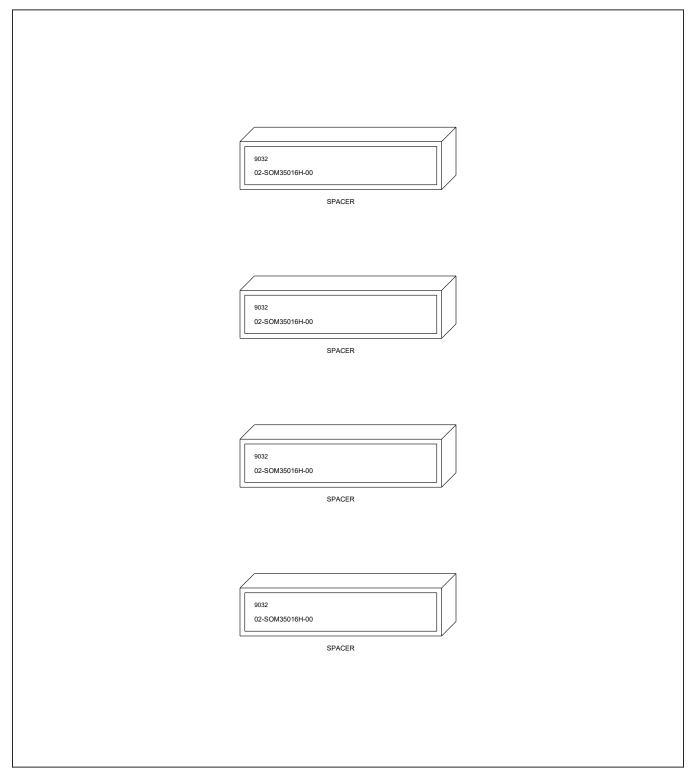
HEADER	SHUNT POSITION	DESCRIPTION			
J2 (HFS = logic low) *	Not Installed	Output chopping current set to 1.8A			
J2 (HFS – logic low)	1-2*	Output chopping current set to 3.6A			
12 (HES = logic high)	Not Installed	Output chopping current set to 0.92A			
J2 (HFS = logic high)	1-2*	Output chopping current set to 1.84A			
	1-2 Not Installed*	Outputs disabled			
	1-2	Outputs enabled			
	3-4 Not Installed*	DIN1 pulled low via internal pulldown resistors			
	3-4	DIN1 connected to +3.3V			
	5-6 Not Installed*	DIN2 pulled low via internal pulldown resistors			
	5-6	DIN2 connected to +3.3V			
	7-8 Not Installed*	DECAY1 pulled low via internal pulldown resistors			
	7-8	DECAY1 connected to +3.3V			
	9-10 Not Installed*	DECAY2 pulled low via internal pulldown resistors			
10	9-10	DECAY2 connected to +3.3V			
J3	11-12 Not Installed*	ISET1 pulled low via internal pulldown resistors			
	11-12	ISET1 connected to +3.3V			
	13-14 Not Installed*	ISET2 pulled low via internal pulldown resistors			
	13-14	ISET2 connected to +3.3V			
	15-16 Not Installed*	ISET3 pulled low via internal pulldown resistors			
	15-16	ISET3 connected to +3.3V			
	17-18 Not Installed*	ISET4 pulled low via internal pulldown resistors			
	17-18	ISET4 connected to +3.3V			
	19-20 Not Installed*	HFS pulled low via internal pulldown resistors			
	19-20	HFS connected to +3.3V			
J17	1-2	Connects the $\overline{\text{SLEEP}}$ pin to V _M to wake the part			
J1/	2-3*	Connects the SLEEP pin to GND to put the part in low power mode			
14.0	1-2	+3.3V supplied externally			
J18	2-3*	+3.3V supplied using on-board LDO			

*Indicates default position.

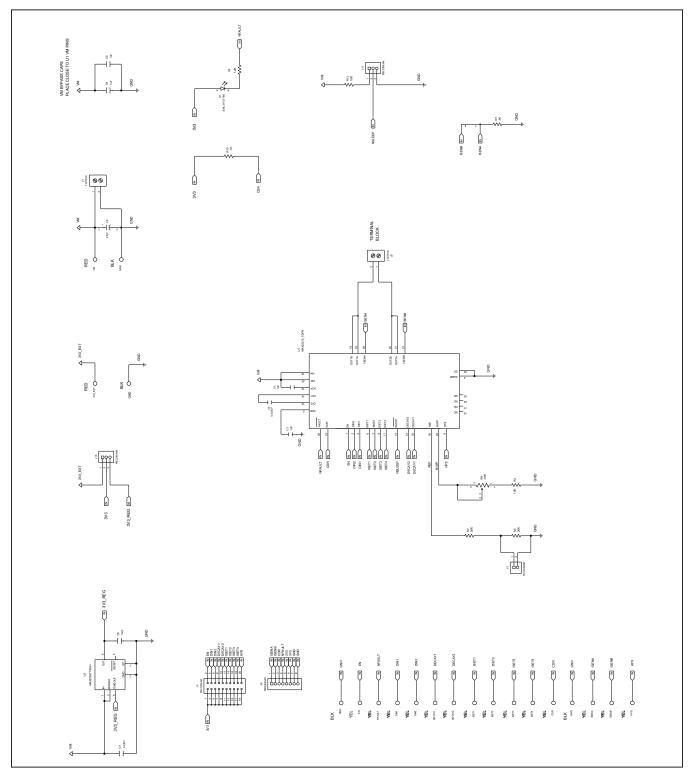
Ordering Information

	PART	TYPE	
MAX	<22212EVKIT#	EV Kit	

#Denotes RoHS compliance.

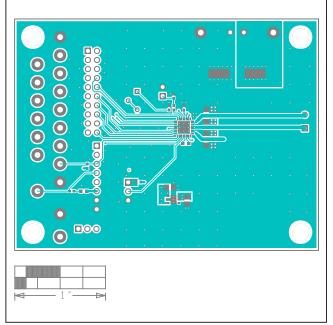

Evaluates: MAX22212

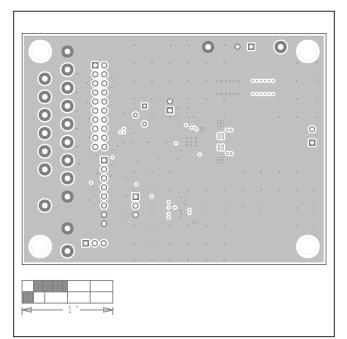
MAX22212 EV Kit Bill of Materials


ITEM	REF_DES	QTY	MFG PART #	MANUFACTURER	VALUE	DESCRIPTION	COMMENTS
1	3V3_EXT, VM	2		KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; RED; PHOSPHOR BRONZE WIRE SIL;	RED
2	C1, C3	2	CL05A105KO5NNN; CC0402KRX5R7BB105	SAMSUNG;YAGEO	1UF	CAP; SMT (0402); 1UF; 10%; 16V; X5R; CERAMIC	
3	C2	1	CGA3E2X7R2A223K080AA	TDK	0.022UF	CAP; SMT (0603); 0.022UF; 10%; 100V; X7R; CERAMIC	
4	C4, C5	2	C3216X7R2A105K160AA; GCH31CR72A105KE01; HMK316B7105KLH	TDK;MURATA;TAIYO YUDEN	1UF	CAP; SMT (1206); 1UF; 10%; 100V; X7R; CERAMIC	
5	C6	1	EEE-FK2A470AQ	PANASONIC	47UF	CAP; SMT (CASE_H13); 47UF; 20%; 100V; ALUMINUM-ELECTROLYTIC	
6	C7	1	C0805C224K1RAC; GRM21AR72A224KAC5	KEMET;MURATA	0.22UF	CAP; SMT (0805); 0.22UF; 10%; 100V; X7R; CERAMIC	
7	C8	1	GRM21BR70J106K; C2012X7R0J106K125AB; CGA4J1X7R0J106K125AC	MURATA;TDK;TDK	10UF	CAP; SMT (0805); 10UF; 10%; 6.3V; X7R; CERAMIC	
8	CDR, DECAY1, DECAY2, DIN1, DIN2, EN, HFS, ISENA, ISENB, ISET1-ISET4, NFAULT	14	5014	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; YELLOW; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	YEL
9	D1	1	SML-311UT	ROHM	SML-311UTT86	DIODE; LED; LOW CURRENT; SMT (0603); VF=1.8V; IF=0.02A; -30 DEGC TO +85 DEGC; RED	
10	J1, J5	2	1727010	PHOENIX CONTACT	1727010	CONNECTOR; FEMALE; THROUGH HOLE; GREEN TERMINAL BLOCK; RIGHT ANGLE; 2PINS	
11	J2	1	PCC02SAAN	SULLINS	PCC02SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65 DEGC TO +125 DEGC	
12	J3	1	PEC10DAAN	SULLINS ELECTRONICS CORP	PEC10DAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 20PINS	
13	J4	1	PBC08SAAN	SULLINS ELECTRONICS CORP.	PBC08SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 8PINS; -65 DEGC TO +125 DEGC	
14	J17, J18	2	PBC03SAAN	SULLINS	PBC03SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3PINS; -65 DEGC TO +125 DEGC	
	R1	1	CRCW04021K40FK; RC0402FR-071K4L	VISHAY DALE; YAGEO PHICOMP	1.4K	RES; SMT (0402); 1.4K; 1%; +/-100PPM/DEGC; 0.0630W	
	R2	1	ERJ-2RKF1502	PANASONIC	15K	RES; SMT (0402); 15K; 1%; +/-100PPM/DEGC; 0.1000W	
	R3, R5	2	ERA-2AEB203	PANASONIC	20K	RES; SMT (0402); 20K; 0.10%; +/-25PPM/DEGC; 0.0630W	
-	R7 R9	1	CRCW04023K00FK 3386P-1-204TLF	VISHAY DALE BOURNS	ЗК 200К	RES; SMT (0402); 3K; 1%; +/-100PPM/DEGC; 0.0630W RES; THROUGH HOLE-RADIAL LEAD; 200K; 10%; +/-100PPM/DEGC; 0.5W	
20	R10	1	RC0402FR-071KL; MCR01MZPF1001	YAGEO; ROHM SEMICONDUCTOR	1К	RES; SMT (0402); 1K; 1%; +/-100PPM/DEGC; 0.0630W	
21	R12	 1	TNPW060310K0BE; RN731JTTD1002B	VISHAY DALE; KOA SPEER ELECTRONICS	10К	RES; SMT (0603); 10K; 0.10%; +/-25PPM/DEGK; 0.1000W	
22	SPACER1-SPACER4	 4	9032	KEYSTONE	9032	MACHINE FABRICATED; ROUND-THRU HOLE SPACER; NO THREAD; M3.5; 5/8IN; NYLON	
23	GND, TP2, TP3, TP4	4	5011	KEYSTONE	N/A	TESTPOINT;PINDIA=0.125IN;TOTALLENGTH=0.445IN; BOARDHOLE=0.063IN;BLACK;PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	(GND,TP2,TP3:BLK)
24	U1	 1	MAX22212_TQFN	MAXIM	MAX22212_TQFN	EVKIT PART - IC; MAX22212; 36V; 7.6A HIGH CURRENT SINGLE H-BRIDGE WITH INTEGRATED CURRENT SENSE; PACKAGE OUTLINE DRAWING: 21-0140; PACKAGE LAND PATTERN: 90-0013; TQFN32-EP	
25	U2	 1	MAX6765TTSD2+	MAXIM	MAX6765TTSD2+	IC; VREG; AUTOMOTIVE MICROPOWER LINEAR REGULATOR WITH SUPERVISOR; TDFN6-EP	
	РСВ		MAX22212	MAXIM	PCB	PCB:MAX22212	-
TOTAL		51					

Evaluates: MAX22212

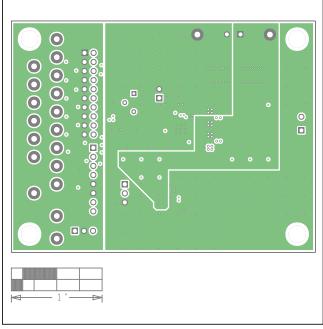
MAX22212 EV Kit Schematic Diagram

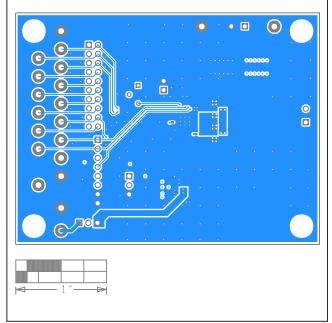

MAX22212 EV Kit Schematic Diagram (continued)


Evaluates: MAX22212

\bigcirc 0 🗖 J1 O GND O J3 3V3 O EN 3V3 O DINI 3V3 O DINI 3V3 O DECAYI 3V3 O DECAYI 3V3 O ISETI 3V3 O ISETI 3V3 O ISETZ 3V3 O ISET4 3V5 ISETZ ISETZ GND ٧M \bigcirc . C6 $igodoldsymbol{0}$ 0 5 J5 0 888 888 888 OUT1 0 O OUT2_ HF S J4 ISENA O ISENB CDR C2 🔳 🔳 \bigcirc 00 NSLEEP GND 0 \bigcirc 3V3_EX1 \bigcirc MAX22212_EVKIT_C J18 MAX22212 EV Kit—Component Placement Guide—Top

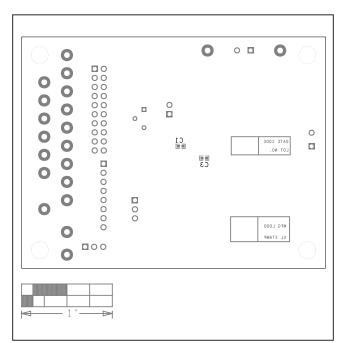
MAX22212 EV Kit PCB Layouts


MAX22212 EV Kit PCB Layout—Silkscreen Top Layer


MAX22212 EV Kit PCB Layout—Internal 2

Silkscreen

Evaluates: MAX22212



MAX22212 EV Kit PCB Layouts (continued)

MAX22212 EV Kit PCB Layout—Internal 3

MAX22212 EV Kit Component Placement Guide—Bottom Silkscreen

Evaluates: MAX22212

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	2/24	Initial release	—

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.