Silicon Carbide (SiC)

MOSFET - SiC,

31mohm, 650V, M2

www.questsemi.com

Features

- Fast Switching with Low EMI/RFI
- Simple to Drive and Easy to Parallel
- Low Gate Charge Minimize Switching Loss
- Short Circuit Withstand Rated
- Improved Efficiency

Key Values

PARAMETER	VALUE	UNIT
$V_{(BR)DSS}$	650	V
$R_{DS(ON)} MAX$	55 @ 20V	$m\Omega$
$I_D MAX$	65	Α
$\boldsymbol{E_{ON}}$	0.19	mJ
E_{OFF}	0.10	mJ
$V_{GS(TH)}$	3.0~5.0	V

Applications

- SMPS (Switching Mode Power Supplies)
- Solar Inverters
- UPS (Uninterruptable Power Supplies)
- Energy Storage

Part Number

QS65SCM65D2P

Package

D2PAK-7L

Marking

Q

Drain (TAB) Driver Source (Pin 2) Power Source (Pins 3, 4, 5, 6, 7) N-CHANNEL MOSFET ROHS Compliant REACH Compliant

This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consentwww.questsemi.com

Silicon Carbide (SiC)

MOSFET - SiC,

31mohm, 650V, M2

www.questsemi.com

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain – to-Source Voltage			V_{DSS}	650	V
Gate – to – Source Voltage			V_{GS}	-10 /+25	V
Recommended Operation Value of gate – $T_{C} < 175^{\circ}\mathrm{C}$ Source Voltage			V_{GSOP}	-5 /+20	V
Continuous Drain current	Steady state	$T_C = 25$ °C	I_D	65	Α
Power Dissipation			P_D	294	W
Continuous Drain current	Steady state	$T_C = 100$ °C	I_D	46	Α
Pulsed Drain Current $T_C = 25^{\circ}\text{C}$			I_{DM}	162	Α
Operating Junction and Storage Temperature			T_J, T_{stg}	-55 <i>TO</i> + 175	°C
Source Current			$I_{\mathcal{S}}$	145	A
Single Pulse Drain to Source Avalanche Energy (I_L =12 A_{pk} , L = 1mH (From Packaging)			EA_S	72	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, then device functionality should not be assumed, damage may occur and reliability may be affected.

Silicon Carbide (SiC)

MOSFET - SiC,

31mohm, 650V, M2

www.questsemi.com

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Junction-to-case – Steady State	$R_{ heta JC}$	0.51	°C/W
Junction-to-Ambient Steady State	$R_{\theta IA}$	40	°C/W

ELECTRICAL CHARACTERISTICS

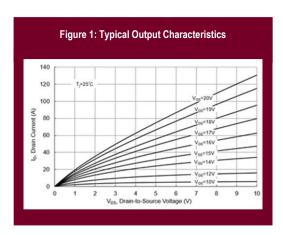
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain – to – Source breakdown voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 1mA$	650	_	_	V
Drain – to – Source breakdown voltage temperature coefficient	$V_{(BR)DSS}/T_J$	$I_D = 20mA \ refer \ to \ 25^{\circ}C$	_	0.13	_	V/°C
Zero gate voltage drain current	I_{GSS} +	$V_{GS} = +20V, V_{DS} = 0V$	_	_	100	nA
Gate – to – Source Leakage Current	I_{GSS} $-$	$V_{GS} = -10V, V_{DS} = 0V$	_	_	-100	μΑ
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}$, $I_D = 8mA$	3.0	_	5.0	V
Recommended Gate Voltage	V_{GOP}		-5	_	+18	V
Drain-to-Source On	$R_{DS(ON)}$	$V_{GS} = 20V, I_D = 25A,$	_	55	70	$m\Omega$
Resistance		$V_{GS} = 18V, I_D = 25A$	_	71	_	
		$V_{GS} = 20V, I_D = 25A$ $T_J = 175^{\circ}C$	_	48	_	
CHARGES, CAPACITANCES	& GATE RESIST	ANCE				
Input capacitance	C_{ISS}	$V_{GS} = 0, V_{DS} = 400V,$	_	1946	_	рF
Output capacitance	C_{OSS}	f = 1MHz	_	182	_	
Reverse transfer capacitance	C_{RSS}		_	7.6	_	
Total Gate Charge	$Q_{G(TOT)}$	$V_{GS} = -5/18, V_{DS} = 520V,$	_	105	_	пС
Gate-to-Source Charge	Q_{GS}	$I_{DS} = 25A$	_	29	_	
Gate-to-Drain Charge	Q_{GD}		_	33	_	
Gate-Resistance	R_G	f = 1MHz	_	8.6	_	Ω

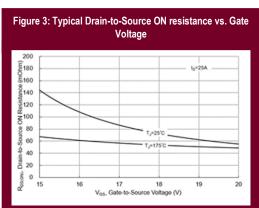
Silicon Carbide (SiC)

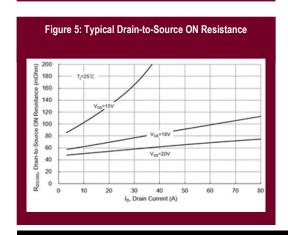
MOSFET - SiC,

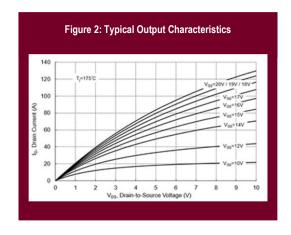
31mohm, 650V, M2

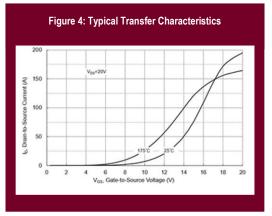
www.questsemi.com

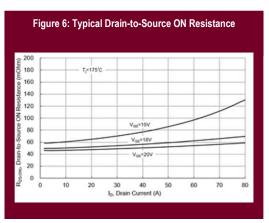

SWITCHING CHARACTERISTICS						
Turn-on delay time	$t_{d(on)}$	$V_{GS} = -3.5/18, V_{DS} = 400V,$	_	21	_	ns
Rise time	t_r	$I_D = 25A, R_G = 2.0\Omega$	_	17	_	
Turn-Off delay time	$t_{d(off)}$	inductive load	_	27	_	
Fall time	t_f		_	15	_	
Turn-On Switching loss	E_{ON}		_	0.19	_	μJ
Turn-Off Switching loss	E_{OFF}		_	0.10	_	
Total Switching Loss	E_{TOT}		_	80	_	
SOURCE-DRAIN DIODE CHARACTERISTICS						
Continuous Source- Drain Diode Forward Current	I_{SD}	Maximum Ratings	_	_	65	A
Forward Diode Voltage	V_{SD}	$V_{GS} = 0V$ $I_S = 25A$	_	4.2	_	V
Reverse Recovery Time	t_{RR}	$V_{GS}=0V,I_F=25A,$	_	19	_	ns
Reverse Recovery Charge	Q_{RR}	$rac{d_i}{d_t} = 1000 A/\mu S$	_	61	_	пС
Peak Reverse Recovery Current	I_{mm}		_	4.8	_	Α

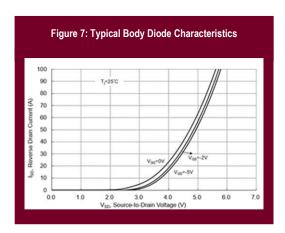

QS65SCM65D2P Silicon Carbide (SiC) MOSFET – SiC,

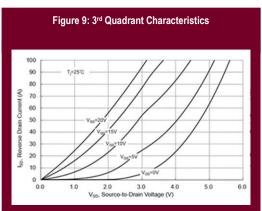

31mohm, 650V, M2

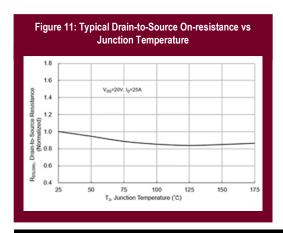


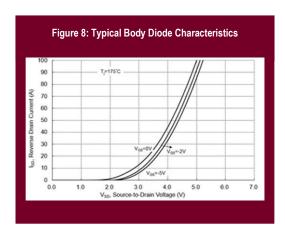

www.questsemi.com

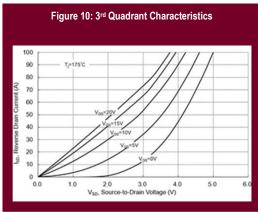


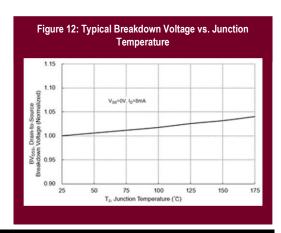

This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consentwww.questsemi.com Tel +61731328687 Email: sales@questsemi.com


QS65SCM65D2P Silicon Carbide (SiC) MOSFET – SiC,

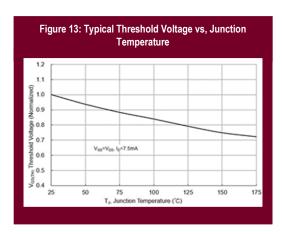

31mohm, 650V, M2

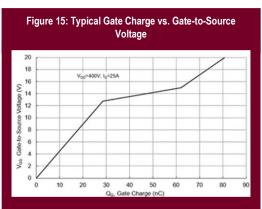


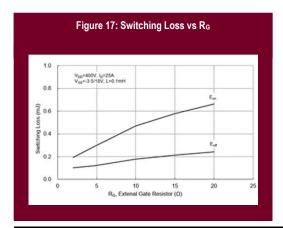

www.questsemi.com

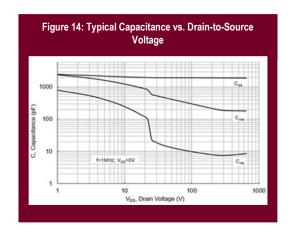


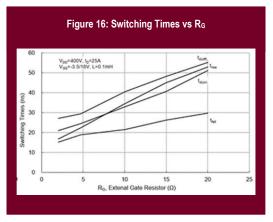
This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consentwww.questsemi.com Tel +61731328687 Email: sales@questsemi.com

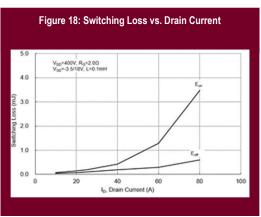

Silicon Carbide (SiC)


MOSFET - SiC,

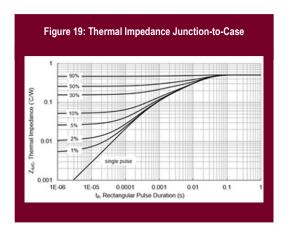

31mohm, 650V, M2

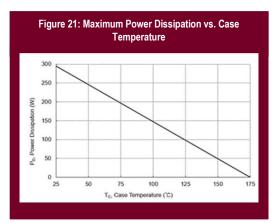


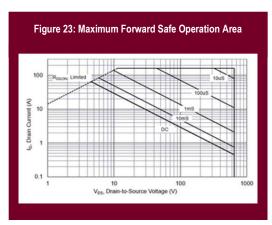

www.questsemi.com

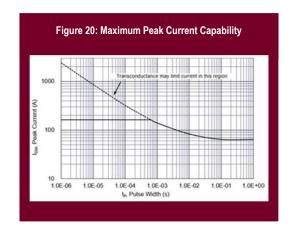


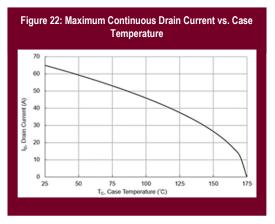
This document is the property of Queensland Semiconductor Technologies Ltd and is furnished in confidence and upon the condition that it is neither copied nor released to a third party without prior consentwww.questsemi.com Tel +61731328687 Email: sales@questsemi.com

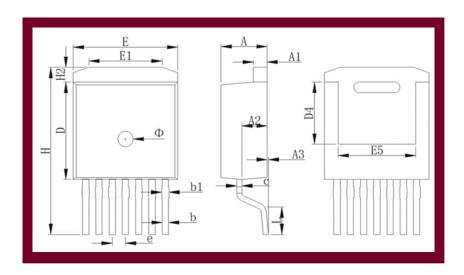

Silicon Carbide (SiC)


MOSFET - SiC,


31mohm, 650V, M2




www.questsemi.com


Silicon Carbide (SiC)

MOSFET - SiC,

31mohm, 650V, M2

www.questsemi.com

Symbol	MIN(mm)	MAX(mm)
Α	4.300	4.560
A1	1.200	1.400
A2	2.450	2.750
A3	0.000	0.250
b	0.500	0.700
b1	0.600	0.900
С	0.450	0.600
D	8.930	9.230
D4	4.650	4.950
E	10.080	10.280
E1	6.500	7.500
E5	6.820	7.620
е	2.40	
Н	15.000	16.000
H2	0.980	1.420
L	1.900	2.500
L1	6.480	7.080
Θ	1.400	1.600

QS65SCM65D2P Silicon Carbide (SiC) MOSFET – SiC, 31mohm, 650V, M2

www.questsemi.com

Disclaimer:

The products described in this datasheet are intended for general-purpose applications, and their specifications and performance characteristics have been established under standard operating conditions. They are not specifically designed or authorized for use in life-critical or life-support systems. Life-critical systems are those in which the failure of a semiconductor device could lead to loss of life, severe injury, or severe damage to property.

It is essential to note that the use of our products in life-critical systems is strictly prohibited without prior written consent and agreement with Quest Semi. Any such usage is at the sole risk of the customer, and Quest Semi disclaims any liability, damages, or loss arising from the use of our products in such applications.

If you are considering the use of our products in life-critical systems, please contact our sales and technical support teams to discuss the necessary measures, risk assessment, and product customization that may be required to ensure compliance with the stringent safety and reliability standards associated with these applications. Customers are strongly advised to conduct their own analysis and testing to confirm the suitability and reliability of our products for their intended application, especially in life-critical systems.

Quest Semi reserves the right to make changes to product specifications and discontinue products without notice. It is the responsibility of the customer to ensure that the latest versions of datasheets are consulted before finalizing system designs or orders.