

## DESCRIPTION

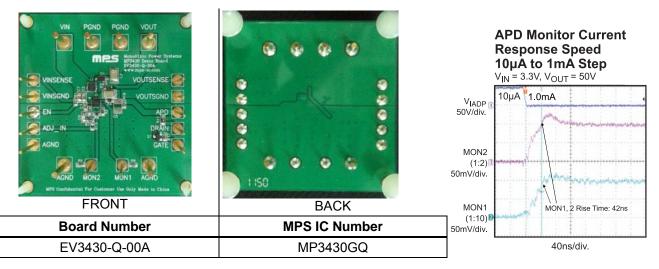
The MP3430 is a monolithic step-up converter with an integrated power switch and a biased avalanche-photodiode (APD) current monitor. The output voltage can be doubled by design through the APD's optical receivers. The MP3430 can provide up to 90V output.

The MP3430 uses a current-mode, fixedfrequency architecture to regulate the output voltage and provide a fast transient response and cycle-by-cycle current limit. The MP3430 features two accurate APD current-monitoring outputs with 1:10 and 1:2 ratios, respectively. Resistor-adjustable current limiting protects the APD from optical power transients.

# **ELECTRICAL SPECIFICATION**

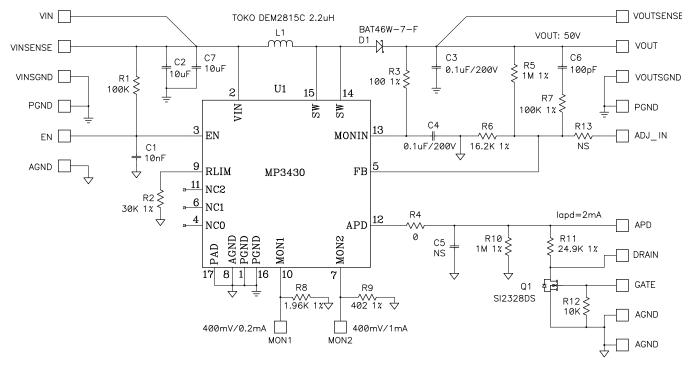
| Parameter      | Symbol           | Value      | Units |
|----------------|------------------|------------|-------|
| Input Voltage  | V <sub>IN</sub>  | 2.7 to 5.5 | V     |
| Output Voltage | V <sub>OUT</sub> | 50         | V     |
| Output Current | I <sub>OUT</sub> | 2          | mA    |

#### **FEATURES**


- 2.7V-to-5.5V Input Voltage
- 100V, 0.8Ω NFET with 280mA Limit
- Up to 90V Output Voltage
- 50ns APD Current Monitoring Response Speed
- 1.3MHz Fixed Switching Frequency
- Internal Compensation and Soft Start
- High Side APD Current Monitor with Less Than ±5% Tolerance.
- 1:10 and 1:2 Output Ratios for APD Current Monitoring
- Thermal-Shutdown Protection
- Programmable APD Over-Current Limit and Protection
- 3×3mm QFN16 Package

# APPLICATIONS

- APD Bias
- PIN Diode Bias
- Optical Receivers and Modules
- Fiber Optic Network Equipment


All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. "MPS" and "The Future of Analog IC Technology", are Registered Trademarks of Monolithic Power Systems, Inc.

#### **EV3430-Q-00A EVALUATION BOARD**





#### **EVALUATION BOARD SCHEMATIC**



#### EV3430-Q-00A BILL OF MATERIALS

| Qty | Ref       | Value | Description                         | Package          | Manufacturer     | Part Number            |
|-----|-----------|-------|-------------------------------------|------------------|------------------|------------------------|
| 1   | L1        | 2.2µH | L, Inductor 2.2uH, 1.8A             | Type<br>DEM2815C | Toko             | 1226AS-H-2R2M          |
| 1   | Q1        | XTR   | MOSFET N-CH 100V<br>1.15A SOT23-3   | SOT-23-3         | Vishay/Siliconix | SI2328DS-T1-E3         |
| 1   | D1        | Diode | DIODE SCHOTTKY<br>200MW 100V SOD-12 | SOD-123          | Diodes Inc       | BAT46W-7-F             |
| 1   | C1        | 10nF  | CAP CER 10000PF 16V<br>10% X7R 0603 | 0603             | muRata           | GRM188R71C103<br>KA01D |
| 2   | C2,<br>C7 | 10µF  | CAP CER 10UF 10V 10%<br>X7R 0805    | 0805             | muRata           | GRM21BR71A106<br>KE51L |
| 2   | C3,<br>C4 | 0.1µF | 0.1uF/250V/X7R/10%/1210             | 1210             | muRata           | GRM32DR72E104<br>KW01L |
| 1   | C5        |       | NS                                  | 1210             |                  |                        |
| 1   | C6        | 100pF | CAP CER<br>100pF/250V/NPO/5%/0805   | 0805             | muRata           | GRM21A5C2E101J<br>W01D |
| 1   | R1        | 100kΩ | Film Res., 5%                       | 0603             | Yageo            | RC0603JR-<br>07100KL   |
| 1   | R2        | 30kΩ  | Film Res., 1%                       | 0603             | Yageo            | RC0603FR-0730KL        |
| 1   | R3        | 100Ω  | Film Res., 1%                       | 0603             | Yageo            | RC0603FR-<br>07100RL   |



# EV3430-Q-00A BILL OF MATERIALS (Continued)

| Qty | Ref        | Value  | Description                                                 | Package | Manufacturer | Part Number          |
|-----|------------|--------|-------------------------------------------------------------|---------|--------------|----------------------|
| 1   | R4         | 0Ω     | Film Res., Jumper                                           | 0603    | Yageo        | RC0603JR-070RL       |
| 2   | R5,<br>R10 | 1MΩ    | R <sub>FB</sub> , Top<br>RES 1.00M OHM 1/10W<br>1% 0603 SMD | 0603    | Yageo        | RC0603FR-071ML       |
| 1   | R6         | 16.2kΩ | Film Res., 1%                                               | 0603    | Yageo        | RC0603FR-<br>0716K2L |
| 1   | R7         | 100kΩ  | Film Res., 1%                                               | 0603    | Yageo        | RC0603FR-<br>07100KL |
| 1   | R8         | 1.96kΩ | Film Res., 1%                                               | 0603    | Yageo        | RC0603FR-<br>071K96L |
| 1   | R9         | 402Ω   | Film Res., 1%                                               | 0603    | Yageo        | RC0603FR-<br>07402RL |
| 1   | R11        | 24.9kΩ | Film Res., 1%                                               | 0805    | Yageo        | RC0805FR-<br>0724K9L |
| 1   | R12        | 10kΩ   | Film Res., 5%                                               | 0603    | Yageo        | RC0603JR-0710KL      |
| 1   | R13        |        | NS                                                          | 0603    |              |                      |
| 1   | U1         |        | MP3430<br>APD Boost IC with Internal<br>Switch              |         | MPS          | MP3430GQ             |



# PRINTED CIRCUIT BOARD LAYOUT

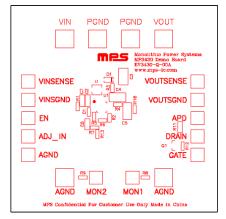



Figure 1—Top Silk Layer

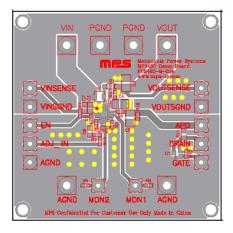



Figure 3—Top Layer with Silk

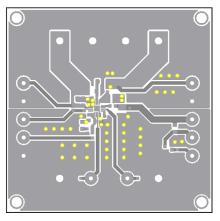



Figure 2—Top Layer

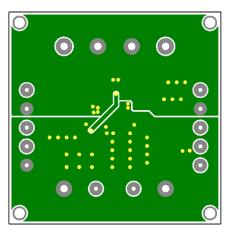



Figure 4—Bottom Layer



### QUICK START GUIDE

- 1) The output voltage of this board is set to 50V
- 2) Preset the power supply to  $2.7V \le VIN \le 5.5V$ .
- 3) Turn the power supply off.
- 4) Connect the power supply terminals to: Positive (+): VIN Negative (-): GND
- 5) Connect the load to: Positive (+): APD Negative (-): GND
- 6) Make sure the load is  $\leq 2mA$
- 7) Turn the power supply on after making the connections.
- 8) The MP3430 is enabled on the evaluation board once VIN is applied.
- 9) The output voltage VOUT can be changed by varying R6. Calculate the new value using the formula:

$$V_{\text{OUT}}=0.8\times\!\left(1\!+\!\frac{R5}{R6}\right)$$

10) The output voltage can be dynamically adjusted through a voltage applied to the ADJ pin. Use the following formula to adjust VOUT:

$$V_{\text{OUT}} = 0.8 \times \left(1 + \frac{\text{R5}}{\text{R6}}\right) + \left(\frac{\text{R5}}{\text{R13}} \times \left(0.8\text{V} - \text{ADJ}\right)\right)$$

11) The APD current limit can be changed by adjusting R2. The formula is:

$$R_{\text{RLIM}} = \frac{68}{I_{\text{APD,MAX}}}$$

Where:

 $R_{RLIM}$  units = k $\Omega$ 

 $I_{RLIM}$  units = mA

**NOTICE:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.