KYOCERa

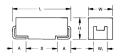
Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

FEATURES

- · Highest Energy per Volume
- Fast DCL Drop With Voltage Applied After Reflow
- Benign Failure Mode Under Recommended Use Conditions
- **Undertab Terminations Layout:**
 - High Volumetric Efficiency
 - Low Profile Case Sizes
 - High Capacitance in Smaller Dimensions
- Close Positioning of Several Parts for Efficient High Density PCB Layout
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested

APPLICATIONS

- · Power Backup for SSDs (MLC, SLC, EFD, PCIe)
- **Battery-Powered Portable Equipment**
- Industrial Alarms **Smart Power Meters**
- Mobile Devices



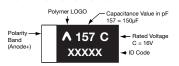
S A_N **CASE DIMENSIONS UNDERTAB millimeters (inches)**

Polarity Band (Anode+)

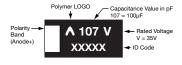
Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H max.	WP±0.10 (0.004)	WN±0.10 (0.004)	AP±0.10 (0.004)	AN±0.10 (0.004)	S Min.
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047)	2.50 (0.098)	2.10 (0.083)	1.15 (0.045)	1.35 (0.053)	1.00 (0.039)
Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059)	3.25 (0.128)	3.25 (0.128)	2.00 (0.079)	3.20 (0.126)	2.10 (0.083)
Z	2917	7343-15	7.30±0.30 (0.287±0.012)	4.30±0.30 (0.169±0.012)	1.50 (0.059)	2.40 (0.094)	2.40 (0.094)	1.30±0.30 (0.051±0.012)	1.30±0.30 (0.051±0.012)	4.40 (0.173)
4	2924	7361-20	7.30 (0.287)	6.10 (0.240)	2.00 (0.079)	4.75 (0.187)	4.75 (0.187)	2.00 (0.079)	3.20 (0.126)	2.10 (0.083)
8	2924	7361-20	7.30±0.30 (0.287±0.012)	6.10 (0.240)	2.00 (0.079)	4.45 (0.175)	4.45 (0.175)	1.60±0.30 (0.063±0.012)	1.60±0.30 (0.063±0.012)	3.80 (0.150)

CASE DIMENSIONS J-LEAD millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
С	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Н	1210	3528-15	3.50 (0.138)	2.80 (0.110)	1.50 (0.059) max.	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
5	2917	7343-40	7.30 (0.287)	4.30 (0.169)	3.80 (0.150)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)


W, dimension applies to the termination width for A dimensional area only

MAXIMUM ENERGY PER CASE SIZE


Case Size	H Max (mm)	Max Energy (mJ)
С	2.8	5.8
D	3.1	21.8
E	4.3	11.9
Н	1.5	3.3
T	1.2	4.7
Х	1.5	18.2
Z	1.5	18.2
4	2.0	43.0
5	4.0	46.6
8	2.0	38.8
٥	2.0	30.0

MARKING

C, D, E, H, T, X, Z, 5 CASE

4,8 CASE

HOW TO ORDER

Case Size See table ahove

4

Capacitance Code

pF code: 1st two digits represent significant figures, 3rd digit represents multiplier

158

М

Tolerance $M = \pm 20\%$

006

Rated DC Voltage 020 = 20Vdc 006 = 6.3 Vdc010 = 10Vdc 025 = 25 Vdc016 = 16Vdc 035 = 35Vdc R

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel (J-Lead)

0055

ESR in $m\Omega$

Ε Additional Character

E = Black resin (it is possible to order PN without "E as identical product)

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

TECHNICAL SPECIFICATIONS

Technical Data:		All technical	data relate to	an ambient ter	mperature of +	25°C		
Capacitance Range:	4	4.7μF to 150	0μF					
Capacitance Tolerance:		±20%						
Leakage Current DCL:		0.1CV						
Rated Voltage DC (VR)	≤ +85°C:	6.3	10	16	20	25	35	50
Surge Voltage (VS)	≤ +85°C:	8	13	21	26	33	46	65
Temperature Range:	-	55°C up to +	-125°C	_		-		

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the KYOCERA AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance						Rated V	oltage DC	(VR) to 85	°C, [mJ]					
μF	Code	6.3V	' (J)	10V	(A)	16V	(C)	20\	/(D)	25V	(E)	35V	(V)	50V	(T)
4.7	475											T(200)	[1.8]		
6.8	685													C(200)	[5.4]
10	106											T(150, 200)	[3.9]	D(120)	[8.0]
15	456											C(200)	[5.8]	E(70)	[11.9]
22	226									T(200)	[4.3]	D(100)	[8.5]		
33	336					H(150)/ T(200)	[3.3]					D(70)	[12.8]		
47	476			C(100)/ H(100)	[1.7]	T(150)	[4.7]			X(100)	[9.2]	X(150)/ Z(150)	[18.2]		
68	686	H(100)	[8.0]	D(45)	[2.5]	D(50)	[6.7]	D(55)	[8.4]	D(70)	[13.3]				
100	107			D(45)	[3.6]	D(50)	[9.9]	D(55)	[12.4]	D(70) 4(100)	[19.6]	4(100)/ 8(100)	[38.8]		
150	157	T(200)	[1.7]	D(45)	[5.4]	X(100)	[14.9]			4(70)/ 8(70)	[29.3]				
220	227	H(170)	[2.6]	D(40)	[7.9]	D(50) 4(70)	[21.8]	4(100)	[27.2]	4(100)	[43.0]				
330	337	D(40)	[3.8]	5(100)	[11.9]	4(70) 5(100)	[32.7]								
470	477	X(50)	[5.4]			5(100)	[46.6]								
1000	108	4(55)	[11.6]												
1500	158	4(55)	[17.4]												

Released ratings (ESR ratings in mOhms in parentheses) [Energy in mJ]

Note: Voltage ratings are minimum values. KYOCERA AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

081621

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

RATINGS & PART NUMBER REFERENCE

			Rated	Maximum	DCL	DF	ESR	1000kHz				ENERGY	
Part Number	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	Max. (μA)	Max. (%)	Max. @ 100kHz (mΩ)	RMS Current (mA) 45°C	Product Category	MSL	Energy (mJ)	Energy/volume (mJ/cm³)	Energy/area (mJ/cm²)
				6.3 Volt @ 85	°C							6.3 Volt @ 85°C	
TCJH686M006#0100E	Н	68	6.3	105	40.8	6	100	1000	3	3	0.8	54	8.0
TCNT157M006#0200E	T	150	6.3	105	90	10	200	700	3	4	1.7	147	17.7
TCJH227M006#0170E	Н	220	6.3	105	132	10	170	800	3	3	2.6	173	26.0
TCJD337M006#0040E	D	330	6.3	105	198	6	40	2400	2	3	3.8	42	12.2
TCNX477M006#0050E	Х	470	6.3	85	282	10	50	1900	5	5	5.4	115	17.3
TCN4108M006#0055E	4	1000	6.3	85	600	20	55	1860	5	4	11.6	130	26.0
TCN4158M006#0055E	4	1500	6.3	85	900	20	55	1860	5	4	17.4	195	39.0
TO 11 147 (140 4 0 4 0 4 0 0 F		47	10	10 Volt @ 85			100	1000			4.7	10 Volt @ 85°C	47.0
TCJH476M010#0100E	Н	47	10	105	47	6	100	1000	3	3	1.7	115	17.3
TCJC476M010#0100E TCJD686M010#0045E	C D	47 68	10	125 105	47 68	6	100 45	1300 2200	3	3	1.7 2.5	34 27	8.8 7.8
TCJD686M010#0045E	D	100	10	105	100	6	45	2200	3	3	3.6	40	11.5
TCJD107M010#0045E	D	150	10	105	150	6	45	2200	3	3	5.4	59	17.2
TCJD227M010#0049E	D	220	10	105	220	6	40	2400	3	3	7.9	87	25.2
TCJ5337M010#0100E	5	330	10	105	330	10	100	1300	2	3	11.9	100	37.8
10000071110101101002		000	10	16 Volt @ 85		10	100	1000			11.2	16 Volt @ 85°C	07.0
TCJH336M016#0150E	Н	33	16	105	52.8	6	150	800	3	3	3.3	223	33.4
TCNT336M016#0200E	T	33	16	105	52.8	6	200	700	3	4	3.3	277	33.4
TCNT476M016#0150E	T	47	16	105	75.2	6	150	800	3	4	4.7	395	47.6
TCJD686M016#0050E	D	68	16	105	108.8	6	50	2100	2	3	6.7	74	21.5
TCJD107M016#0050E	D	100	16	105	160	6	50	2100	2	3	9.9	109	31.6
TCNX157M016#0100E	Х	150	16	105	240	6	100	1300	3	4	14.9	316	47.4
TCJD227M016#0050E	D	220	16	105	352	10	50	2100	2	3	21.8	240	69.5
TCN4227M016#0070E	4	220	16	105	352	20	70	1650	2	4	21.8	245	49.0
TCN4337M016#0070E	4	330	16	105	528	20	70	1650	3	4	32.7	367	73.5
TCJ5337M016#0100E	5	330	16	105	528	10	100	1300	2	3	32.7	274	104.2
TCJ5477M016#0100E	5	470	16	105	752	10	100	1300	3	3	46.6	391	148.5
				20 Volt @ 85								20 Volt @ 85°C	
TCJD686M020#0055E	D	68	20	105	136	6	55	2000	3	3	8.4	92	26.7
TCJD107M020#0055E	D	100	20	105	200	6	55	2000	3	3	12.4	136	39.3
TCN4227M020#0100E	4	220	20	85	440	10	100	1380	5	4	27.2	305	61.1
				25 Volt @ 85								25 Volt @ 85°C	
TCNT226M025#0200E	T	22	25	105	55	6	200	700	3	4	4.3	364	43.9
TCNX476M025#0100E	X	47	25	105	117.5	6	100	1300	2	5	9.2	195	29.3
TCJD686M025#0070E TCJD107M025#0070E	D D	68 100	25	105	170	6	70 70	1800 1800	2	3	13.3 19.6	146 215	42.3
TCN4107M025#0070E	4	100	25 25	105 105	250 250	6	100	1800	2	3	19.6	219	62.3 43.9
TCN4107M025#0100E	4	150	25	105	375	6	70	1650	2	4	29.3	329	65.9
TCN8157M025#0070E	8	150	25	105	375	8	70	1650	2	3	29.3	329	65.9
TCN4227M025#0100E	4	220	25	105	550	10	100	1380	3	4	43.0	483	96.7
				35 Volt @ 85			100	1000				35 Volt @ 85°C	
TCNT475M035#0200E	Т	4.7	35	105	16.5	10	200	700	3	4	1.8	154	18.6
TCNT106M035#0150E	Т	10	35	105	35	10	150	800	3	4	3.9	328	39.5
TCNT106M035#0200E	Т	10	35	105	35	10	200	700	3	4	3.9	328	39.5
TCJC156M035#0200E	С	15	35	105	52.5	6	200	900	3	3	5.8	116	30.3
TCJD226M035#0100E	D	22	35	105	77	6	100	1500	2	3	8.5	94	27.1
TCJD336M035#0070E	D	33	35	105	115.5	6	70	1800	2	3	12.8	141	40.7
TCNX476M035#0150E	Х	47	35	105	165	10	150	1100	3	4	18.2	387	58.0
TCNZ476M035#0150E	Z	47	35	105	165	10	150	1100	3	4	18.2	387	58.0
TCN4107M035#0100E	4	100	35	105	350	10	100	1380	2	3	38.8	435	87.1
TCN8107M035#0100E	8	100	35	105	350	10	100	1380	2	3	38.8	435	87.1
				50 Volt @ 85								50 Volt @ 85°C	
TCJC685M050#0200E	С	6.8	50	105	34	8	200	900	3	3	5.4	108	28.2
TCJD106M050#0120E	D	10	50	105	50	10	120	1400	3	3	8.0	87	25.3
TCJE156M050#0070E	Е	15	50	105	75	6	70	1900	3	3	11.9	93	38.0

Energy is calculated by this formula (consider derating factor): Energy = $\frac{1}{2}$ C x ((Vr x X)² – Vx²)

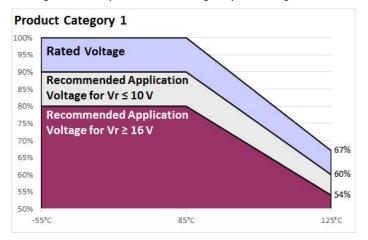
where C = Capacitance

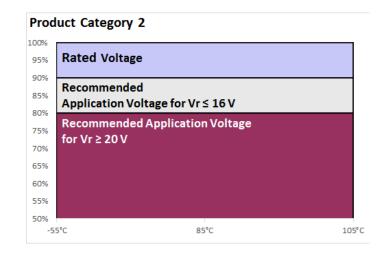
Vr = Rated Voltage

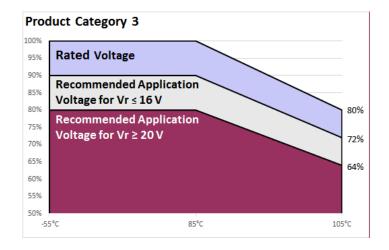
X = Recommended derating factor

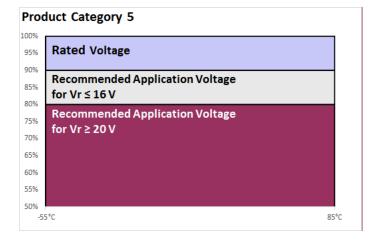
Vx= 3V (invariable)

Moisture Sensitivity Level (MSL) is defined according to J-STD-020. All technical data relates to an ambient temperature of +25°C. Capacitance is measured at 120Hz, 0.5RMS with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes. ESR allowed to move up to 1.25 times catalog limit post mounting. For typical weight and composition see page 259.


NOTE: KYOCERA AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.




Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors


RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 1 (TEMPERATURE RANGE -55°C TO +125°C)

TEST		Condition	1	Characteristics								
				Visual examination	no visible	e damage						
		ed voltage (Ur) at 85°C		DCL	1.25 x in	1.25 x initial limit						
Endurance		Jr) at 125°C for 2000 h ce of ≤0.1Ω/V. Stabilize		ΔC/C	within ±2	within ±20% of initial value						
		urs before measuring.	at room temperature	DF	1.5 x init	1.5 x initial limit						
				ESR	2 x initia	2 x initial limit						
				Visual examination	no visibl	e damage						
	Store at 1	25°C, no voltage applie	ed, for 2000 hours.	DCL	2 x initia	l limit						
Storage Life	Stabilize a	at room temperature fo		ΔC/C	within ±2	20% of initia	l value					
	measurin	g.		DF	1.5 x init	ial limit						
				ESR	2 x initia	l limit						
				Visual examination	no visib	le damage						
		5°C and 95% relative h		DCL	3 x initia	al limit						
Humidity		th no applied voltage. Source and humidity for 1-2	ΔC/C	within +	within +30/-20% of initial value							
	measuring		E Hodro berore	DF	1.5 x ini	1.5 x initial limit						
					2 x initia	al limit						
	Step 1	Temperature°C +20	Duration(min) 15		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
Temperature	2	+20 -55 +20	15 15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Stability	4	+85	15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+30/-0%	±5%		
	5 6	+125 +20	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*		
				Visual examination	no visible	e damage						
Surge		0.67x rated voltage (Ur)		DCL	initial lim	nit						
Voltage		duration 6 min (30 sec ch) through a charge / disc		ΔC/C		within +10/-20% of initial value for Vr ≤ 10V within +20/-30% of initial value for Vr ≥ 16V						
				DF	1.25 x in	1.25 x initial limit						
				Visual examination	no visib	le damage						
Markantant				DCL	initial lin	nit						
Mechanical Shock	MIL-STD-2	202, Method 213, Cond	lition C	ΔC/C	within ±	5% of initia	l value					
SHOCK				DF	initial lir	nit						
				ESR	1.25 x in	itial limit						
				Visual examination	no visib	le damage						
				DCL	initial lin	nit						
Vibration	MIL-STD-2	202, Method 204, Cond	lition D	ΔC/C	within ±	5% of initia	l value					
				DF	initial lir	nit						
				ESR	1.25 x in	itial limit						

*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 2, 3 (TEMPERATURE RANGE -55°C TO +105°C)

TEST		Condition			Characteristics							
			(00001	Visual examination	no visibl	e damage						
	through a	ed voltage (Ur) at 85°C circuit impedance of	for 2000 nours ≤0.1Ω/V (all	DCL	1.25 x in	1.25 x initial limit						
Endurance	CATEGOR (CATEGOI 3) at 105°	RIES). And / or apply ra RY 2) or 0.8x rated volt C for 2000 hours throu	ted voltage (Ur) age (CATEGORY ugh a circuit	ΔC/C		within +10/-20% of initial value for $Vr \le 16V$ within $\pm 20\%$ of initial value for $Vr \ge 20V$						
	impedanc	e of ≤0.1Ω/V. Always s	stabilize at room	DF	1.5 x init	ial limit						
	Apply rated voltage (Ur) at 85°C for 2000 hours through a circuit impedance of ≤0.1Ω/V (all CATEGORIES). And / or apply rated voltage (Ur) (CATEGORY 2) or 0.8x rated voltage (CATEGORY 3) at 105°C for 2000 hours through a circuit impedance of ≤0.1Ω/V. Always stabilize at room temperature for 1-2 hours before measuring. Store at 105°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hou before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Step Temperature of 15 to 1	e measuring.	ESR	2 x initia	l limit							
				Visual examination	no visibl	e damage						
				DCL	1.25 x in	itial limit						
Storage Life	hours. Sta	abilize at room temper		ΔC/C		10/-20% of i 20% of initia		e for Vr ≤ 16 r Vr ≥ 20V	5V			
	Delote Ille	easuring.		DF	1.5 x init	ial limit						
				ESR	2 x initia	l limit						
				Visual examination	no visib	le damage						
				DCL	3 x initia	al limit						
Humidity		11		ΔC/C	within +	within +30/-20% of initial value						
	· ·	,	z nours before	DF	1.5 x ini	1.5 x initial limit						
		9.		ESR	2 x initia	2 x initial limit						
					+20°C	-55°C	+20°C	+85°C	+105°C	+20°C		
Temperature	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
Stability		2 -55 15 3 +20 15 4 +85 15		ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+30/-0%	±5%		
				DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*		
		-		Visual examination	no visible	e damage				l		
				DCL	initial lim	nit						
Surge Voltage					within +1	10/-20% of i	nitial valu	e for Vr ≤ 16	V			
			e) through a charge	ΔC/C	within +2	20/-30% of i	nitial valu	e for Vr≥20	V			
	/ discharge	e resistance of 10000		DF	1.25 x in	itial limit						
				Visual examination	no visib	le damage						
Machanical				DCL	initial lir	nit						
	Mechanical MIL-STD-202, Method 213, Condition C			ΔC/C	within ±	5% of initia	l value					
Shock				DF	initial lir	nit						
				ESR	1.25 x in	itial limit						
					no visib	le damage						
				DCL	initial lir	nit						
Vibration	MIL-STD-2	202, Method 204, Cond	dition D	ΔC/C	within ±	5% of initia	l value					
				DF	initial lir	nit						
				ESR	1.25 x in	itial limit						

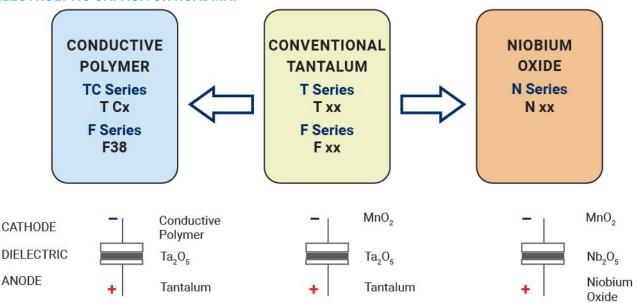
*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 5 (TEMPERATURE RANGE -55°C TO +85°C)

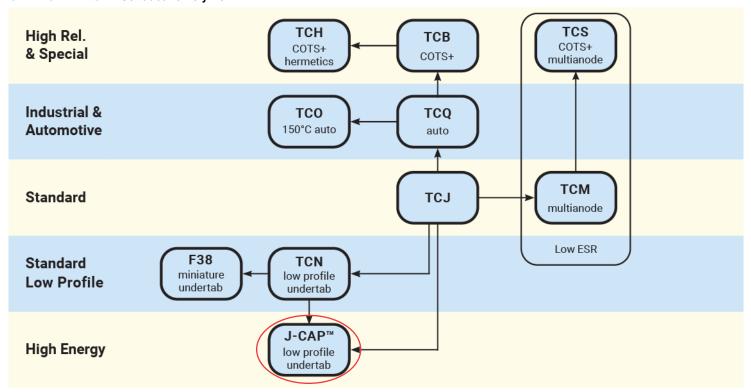
TEST		Condition		Characteristics							
				Visual examination	no visible d	amage					
Endurance	Apply rated valt	ana (Ur) at 0500 f	or 2000 haves	DCL	1.25 x initia	1.25 x initial limit					
Endurance	at room temper	age (Ur) at 85°C f it impedance of ≤0 ature for 1-2 hour	or 2000 nours).1Ω/V. Stabilize s before	ΔC/C		within +10/-20% of initial value for Vr ≤ 16V within ±20% of initial value for Vr ≥ 20V					
Endurance	measuring.			DF	1.5 x initial	limit					
				ESR	2 x initial lir	nit					
				Visual examination	no visible d	amage					
				DCL	1.25 x initia	ıl limit					
Storage Life		o voltage applied, m temperature for		ΔC/C		/-20% of initia % of initial val					
	before measuri	ng.		DF	1.5 x initial	limit					
				ESR	2 x initial lir	nit					
				Visual examination	no visible	damage					
		nd 95% relative hu	,	DCL	5 x initial li	imit					
Humidity		applied voltage. St		ΔC/C	within +40	within +40/-20% of initial value					
,	measuring.	d humidity for 1-2	nours before	DF	1.5 x initial limit						
	incusuring.			ESR	2 x initial l	imit					
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+20°		
Temperature	1 2	+20 -55	15 15	DCL	IL*	n/a	IL*	10 x IL*	IL*		
	3	+20	15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	±5%		
	5	+85 +20	15 15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	IL*		
				Visual examination	no visible d	amage					
		voltage (Ur) at 85°0		DCL	initial limit						
		n (30 sec charge, 5 i gh a charge / disch		10/0	within +10/	-20% of initial	value for Vr	≤ 16V			
voitage	of 1000Ω	gira charge / discri	large resistance	ΔC/C	within +20/	-30% of initial	value for Vr	≥ 20V			
				DF	1.25 x initia	l limit					
				Visual examination	no visible	damage					
Mashaniaal				DCL	initial limit						
Mechanical	MIL-STD-202, M	lethod 213, Condi	tion C	ΔC/C	within ±5%	of initial val	ue				
Shock				DF	initial limit						
				ESR	1.25 x initia	l limit					
				Visual examination	no visible	damage					
				DCL	initial limit						
Vibration	MIL-STD-202, M	lethod 204, Condi	tion D	ΔC/C	within ±5%	of initial val	ue				
				DF	initial limit						
				ESR	1.25 x initia	l limit					


*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.



Highest Joules/cc Conductive Polymer Solid Electrolytic Chip Capacitors


SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

