Fair-Rite Products Corp.

Your Signal Solution®

Chip Beads (2504021007Y0)

Part Number: 2504021007Y0

MULTI- LAYER CHIP BEAD

Part Number System: Example 2512063017Y1

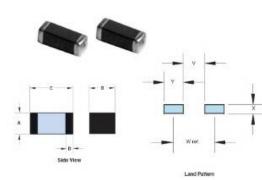
25	1206 301		7	Y	1		
Chip	Chip Package Impeda		Packaging	Material	Current Code		
Bead	Size	Code	Code	Code	0 < 1.0A		
Code	Code	300 A	6= Bulk Packed	Y = Standard Signal Speed	1 ≥1.0A <2.0A		
		7=	Taped and Reeled 7" Reel	Z = High Signal Speed	3 ≥3.0A <4.0A		
		8=	Taped and Reeled 13" Reel	H = GHz Speed	ETC		

Fair- Rite offers a broad selection of cost effective multi- layer chip beads to suppress conducted EMI signals. Chip beads can be used in an array of devices such as cellular phones, computers, laptops, pagers, etc. The small package sizes accommodate automated placements and allow for a dense packaging of circuit boards.

Chip Beads are available in standard, high and GHz signal speeds.

Packaging Options:

- All multi- layer chip beads are supplied taped and reeled, if required bulk packed chip beads can be provided.

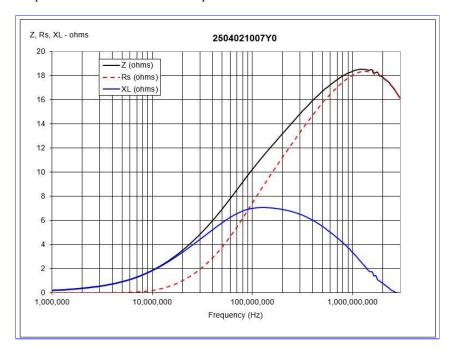

The suggested land patterns are in accordance to the latest revision of IPC-7351.

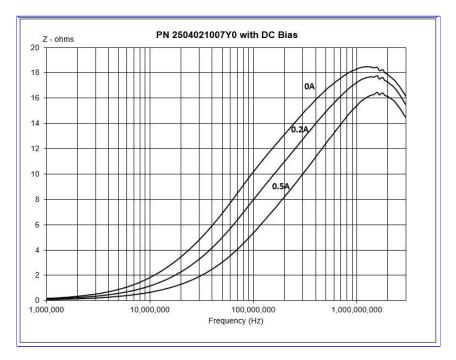
<u>Weight:</u> 0.002 (g)

Package Size: 0402 (1005)

Dim	mm	mm tol	nor	ninal inch		inch misc.	
А	0.5	±0.05	0.0	2			
В	0.5	±0.05	0.0	2		_	
С	1	±0.05	0.0	4		_	
D	0.25	±0.15	0.01			_	
Land P	atterns						
V		W		Х	Y		Ζ
0.40						90	
(0.016")		(0.051")		(0.028")	(0	.035")	-

Reel Information								
Tape Width	Pitch	Parts 7"	Parts 13"	Parts 14"				
mm	mm	Reel	Reel	Reel				
8	4	10000	_	_				


Pkg. Size	٨	в									Land P	atterns			Reel In	ormation
			C	D	WL (g)	×	W (ref)	×	Y	Tape Width mm	Pitch	Part 7" Ree				
0402 (1005)	0.5±0.05 0.020	0.5±0.05 0.020	1.0±0.05 0.040	0.25±0.15 0.010	0.002	0.40 0.016	1.30 0.051	0.70 0.028	0.90 0.035	8	4	1000				
0603 (1608)	0.8±0.15 0.031	0.8±0.15 0.031	1.6±0.15 0.063	0.4±0.2 0.016	0.006	0.60 0.024	1.70 0.067	1.00 0.039	1.10 0.043	8	4	4000				
0805 (2012)	0.9±0.2 0.035	1.25±0.2 0.049	2.0±0.2 0.079	0.5±0.3 0.020	0.01	0.60 0.024	1.90 0.075	1.50 0.059	1.30 0.051	8	4	4000				
1206 (3216)	1.1±0.2 0.043	1.6±0.2 0.063	3.2±0.2 0.126	0.7±0.3 0.028	0.03	1.20 0.047	2.80 0.110	1.80 0.071	1.60 0.063	8	4	3000				
1806 (4516)	1.6±0.2 0.063	1.6±0.2 0.063	4.5±0.2 0.177	0.7±0.3 0.028	0.06	2.00 0.079	3.90 0.154	1.80 0.071	1.90 0.075	12	8	2000				
1812 (4532)	1.5±0.2 0.059	3.2±0.2 0.126	4.5±0.2 0.177	0.7±0.3 0.028	0.09	2.00 0.079	3.90 0.154	3.40 0.134	1.90 0.075	12	8	1000				


Chart Legend

+ Test frequency

Typical Impedance (Ω)							
50 MHz	6.9)					
100 MHz^+	10	±259	%				
500 MHz	16						
1000 MHz^+	-						
Electrical Provide the Provident Pro	ope	rties					
Max DCR (Ω)		0.05					
Max Current (mA)		500					

The impedance values listed are typical values. The nominal impedance with a +/-25% tolerance is specified for the + marked 100 MHz. Chip beads are measured for impedance on the HP 4291A and fixture HP 16192A. Chip beads are 100% tested for impedance and dc resistance.

CSV Download

	Fair- Rite Products Corp.			One Commercial I	288			
888-324-7748		845-895-2055		Fax: 845-895-2629				www.fair- rite.com