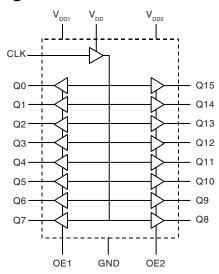
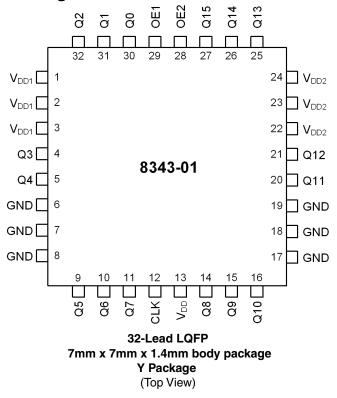
RENESAS Low Skew, 1-TO-16 LVCMOS / LVTTL Fanout Buffer


DATA SHEET

General Description


The 8343-01 is a low skew, 1-to-16 LVCMOS/LVTTL Fanout Buffer. The 8343-01 single ended clock input accepts LVCMOS or LVTTL input levels. The ICS8343-01 operates at 3.3V, 2.5V and mixed 3.3V input and 2.5V supply modes over the commercial temperature range. Guaranteed output and part-to-part skew characteristics make the 8343-01 ideal for those clock distribution applications demanding well defined performance and repeatability.

Features

- 16 LVCMOS/LVTTL outputs
- One LVCMOS/LVTTL clock input
- CLK can accept the following input levels: LVCMOS, LVTTL
- Maximum output frequency: 200MHz
- Dual output enable inputs facilitates 1-to-16 or 1-to-8 input to output modes
- · All inputs are 5V tolerant
- Output skew: 250ps (maximum)
- Part-to-part skew: 700ps (maximum)
- Full 3.3V and 2.5V or mixed 3.3V core/2.5V operating supply
- 0°C to 70°C ambient operating temperature
- · Lead-Free packaging
- · Industrial temperature information available upon request

Pin Assignment

Block Diagram

Pin Descriptions and Characteristics

Table 1. Pin Descriptions¹

Number	Name	Ту	ре	Description
1	V _{DD1}	Power		Q0 through Q7 output supply pin.
2	V _{DD1}	Power		Q0 through Q7 output supply pin.
3	V _{DD1}	Power		Q0 through Q7 output supply pin.
4	Q3	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
5	Q4	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
6	GND	Power		Power supply ground.
7	GND	Power		Power supply ground.
8	GND	Power		Power supply ground.
9	Q5	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
10	Q6	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
11	Q7	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
12	CLK	Input	Pulldown	LVCMOS/LVTTL clock input / 5V tolerant.
13	V _{DD}	Power		Core supply pin.
14	Q8	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
15	Q9	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
16	Q10	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
17	GND	Power		Power supply ground.
18	GND	Power		Power supply ground.
19	GND	Power		Power supply ground.
20	Q11	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
21	Q12	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
22	V _{DD2}	Power		Q8 through Q15 output supply pin.
23	V _{DD2}	Power		Q8 through Q15 output supply pin.
24	V _{DD2}	Power		Q8 through Q15 output supply pin.
25	Q13	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
26	Q14	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
27	Q15	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
28	OE2	Input	Pullup	Output enable. When low forces outputs Q8 through Q15 to HiZ state. 5V tolerant. LVCMOS/LVTTL interface levels.
29	OE1	Input	Pullup	Output enable. When low forces outputs Q0 through Q7 to HiZ state. 5V tolerant. LVCMOS/LVTTL interface levels.
30	Q0	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
31	Q1	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.
32	Q2	Output		LVCMOS/LVTTL clock output. 7Ω typical output impedance.

NOTE 1: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
Power Dissipatio	Power Dissipation Capacitance	V _{DD} , V _{DD1} , V _{DD2} = 3.465V		11		pF
C _{PD}	(per output)	$V_{DD1}, V_{DD2} = 2.63V$		9		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}	Output Impedance	V_{DD} , V_{DD1} , V_{DD2} = 3.3V	5	7	12	Ω

Table 3. Function Table¹

Inp	uts	Outputs		
OE1	OE2	Q0:Q7	Q8:Q15	
0	0	HiZ	HiZ	
1	0	Active	HiZ	
0	1	HiZ	Active	
1	1	Active	Active	

NOTE 1: OE1 and OE2 are 5V tolerant.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *Section*, *"DC Electrical Characteristics" or AC Electrical Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DDx} + 0.5V
Storage Temperature, T _{STG}	-65°C to 150°C
Maximum Junction Temperature, TJ _{MAX}	125°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DD1} = V_{DD2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = 0^{\circ}C$ to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
N	Output Supply Voltage ¹		3.135	3.3	3.465	V
V _{DDx}			2.375	2.5	2.625	V
I _{DD}	Power Supply Current				35	mA
I _{DDx}	Output Supply Current ²				14	mA

NOTE 1: V_{DDx} denotes V_{DD1} and V_{DD2} .

NOTE 2: I_{DDx} denotes the sum of I_{DD1} and I_{DD2} .

Table 4B. Power Supply DC Characteristics, $V_{DD} = V_{DD1} = V_{DD2} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDx}	Output Supply Voltage ¹		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				34	mA
I _{DDx}	Output Supply Current ²				13	mA

NOTE 1: V_{DDx} denotes V_{DD1} and V_{DD2} .

NOTE 2: I_{DDx} denotes the sum of I_{DD1} and I_{DD2} .

Table 4C. LVCMOS / LVTTL DC Characteristics, $V_{DD} = V_{DD1} = V_{DD2} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{DD} = 3.3V \pm 5\%$, $V_{DD1} = V_{DD2} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
M	Input High	OE1, OE2		2		V _{DD} + 0.3	V
V _{IH}	Voltage	CLK		2		V _{DD} + 0.3	V
M	Input Low	OE1, OE2		-0.3		0.8	V
V _{IL}	Voltage	CLK		-0.3		1.3	V
	Input High	OE1, OE2	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μA
IIH	Current	CLK	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μA
	Input Low	OE1, OE2	$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-150			μA
ι _{IL}	Current	CLK	$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-5			μA
M	Output High Vo	utogo ¹	$V_{DD1} = V_{DD2} = 3.465V$	2.6			V
V _{OH}		maye	$V_{DD1} = V_{DD2} = 2.625V$	1.8			V
V _{OL}	Output Low Vol	Itage	V _{DD1} = V _{DD2} = 3.465V or 2.625V			0.5	V
I _{OZL}	Output Tristate	Current Low				5	μA
I _{OZH}	Output Tristate	Current High				5	μA

NOTE 1: Outputs terminated with 50Ω to V_{DDx} /2. See Parameter Measurement Information, "Output Load Test Circuit Diagrams".

AC Electrical Characteristics

Table 5A. AC Electrical Characteristics, $V_{DD} = V_{DD1} = V_{DD2} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C^1$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
t _{pLH}	Propagation Delay ²	<i>f</i> ≤ 200MHz	2.0		4.0	ns
<i>t</i> sk(o)	Output Skew ^{3, 4}	Measured on rising edge @ V _{DDx} /2			250	ps
<i>t</i> sk(pp)	Part-to-Part Skew ^{4, 5}	Measured on rising edge @ V _{DDx} /2			700	ps
t _R / t _F	Output Rise/ Fall Time	20% to 80%	0.4		1.5	ns
odc	Output Duty Cycle	<i>f</i> ≤ 133MHz	45		55	%
t _{PW}	Output Pulse Width	<i>f</i> > 133MHz	t _{PERIOD} /2 - 0.25	t _{PERIOD} /2	t _{PERIOD} /2 + 0.25	ns

NOTE 1: All parameters measured at f_{MAX} unless noted otherwise.

NOTE 2: Measured from $V_{DD}/2$ of the input to $V_{DDx}/2$ of the output.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDx}/2.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDx}/2.

Table 5B. AC Electrical Characteristics, V_{DD} 3.3V ±5%, $V_{DD1} = V_{DD2} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C^1$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
t _{pLH}	Propagation Delay ²	<i>f</i> ≤ 200MHz	2.0		4.5	ns
<i>t</i> sk(o)	Output Skew ^{3, 4}	Measured on rising edge @ V _{DDx} /2			250	ps
<i>t</i> sk(pp)	Part-to-Part Skew ^{4, 5}	Measured on rising edge @ V _{DDx} /2			700	ps
t _R / t _F	Output Rise/ Fall Time	20% to 80%	0.4		1.0	ns
odc	Output Duty Cycle	<i>f</i> ≤ 133MHz	40		60	%

NOTE 1: All parameters measured at f_{MAX} unless noted otherwise.

NOTE 2: Measured from V_{DD}/2 of the input to V_{DDx}/2 of the output.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDx}/2.

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDx}/2.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				200	MHz
<i>t</i> sk(o)	Output Skew ²	Measured on rising edge @ V _{DDx} /2			250	ps

Table 5C. AC Electrical Characteristics, $V_{DD} = V_{DD2} = 3.3V \pm 5\%$, $V_{DD1} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C^1$

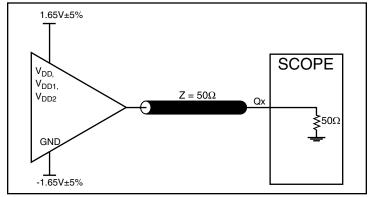
NOTE 1: All parameters measured at f_{MAX} unless noted otherwise.

NOTE 2: Defined as skew across outputs at the same supply voltages within a bank, and with equal load conditions.

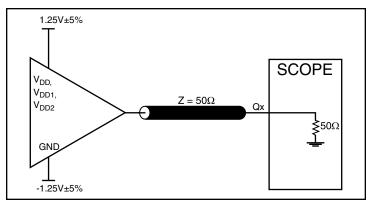
Table 5D. AC Electrical Characteristics, V_{DD} 3.3V ±5%, $V_{DD1} = V_{DD2} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C^1$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				133	MHz
t _{pLH}	Propagation Delay ²	<i>f</i> ≤ 200MHz	2.0		4.0	ns
<i>t</i> sk(o)	Output Skew ^{3, 4}	Measured on rising edge @ V _{DDx} /2			250	ps
<i>t</i> sk(pp)	Part-to-Part Skew ^{4, 5}	Measured on rising edge @ V _{DDx} /2			1	ns
t _R / t _F	Output Rise/ Fall Time	20% to 80%	0.4		1.0	ns
odc	Output Duty Cycle	<i>f</i> ≤ 133MHz	40		60	%

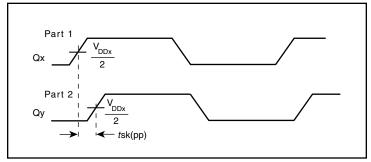
NOTE 1: All parameters measured at ${\rm f}_{\rm MAX}$ unless noted otherwise.

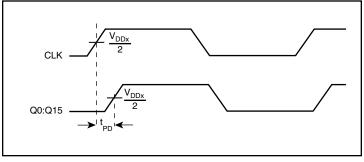

NOTE 2: Measured from $V_{DD}/2$ of the input to $V_{DDx}/2$ of the output.

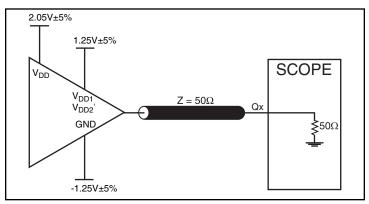
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDx}/2.

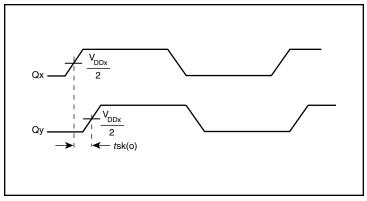

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

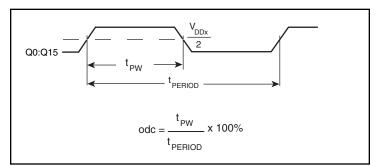
NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{DDx}/2.

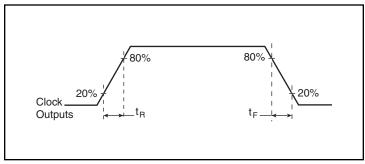

Parameter Measurement Information




2.5V Core/2.5V Output Load Test Circuit


Part-to-Part Skew




3.3V Core/2.5V Output Load Test Circuit

Output Skew

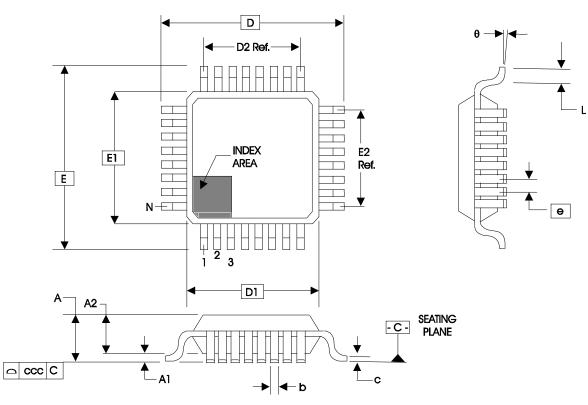
Output Duty Cycle/Pulse Width/Period

Output Rise/Fall Time

Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 32-Lead LQFP 1

$ heta_{JA}$ by Velocity							
Linear Feet per Minute	0	200	500				
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W				
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W				


NOTE 1: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Transistor Count

The transistor count for 8343-01 is 985.

Package Outline and Package Dimensions

Package Outline - Y Suffix for 32-Lead LQFP

Table 7. Package Dimensions

JEDEC Variation All Dimensions in Millimeters						
Symbol	Minimum	Nominal	Maximum			
N	32					
A	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.30	0.37	0.45			
с	0.09	-	0.20			
D	9.00 Basic					
D1	7.00 Basic					
D2	5.60 Ref.					
E	9.00 Basic					
E1	7.00 Basic					
E2	5.60 Ref.					
е	0.80 Basic					
L	0.45	0.60	0.75			
θ	0°	-	7 °			
ссс	-	-	0.10			

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8343AY-01LF	ICS8343AY01L	"Lead-Free" 32-Lead LQFP	Tray	0°C to 70°C
8343AY-01LFT	ICS8343AY01L	"Lead-Free" 32-Lead LQFP	Tape & Reel	0°C to 70°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date		
	T2 2		Pin Characteristics Table - changed C _{IN} 4pF max to 4pF typical.			
A T8 11			Added to R_{OUT} , 5 Ω min. and 12 Ω max.	9/18/03		
		11	Ordering Information correct package column from 48 Lead to 32 Lead.			
В	р T5C 5		Added Mixed AC Characteristics Table.	8/13/04		
D			Updated format.	0/13/04		
В	Т8	9	Added Lead-Free marking to Ordering Information Table.	9/16/04		
					Updated format and contact information.	
В		1	General Description: Deleted HiPerClockS reference.	8/25/14		
	T1	2	Re-organized table sequentially.	0/20/14		
	Т8	10	Removed leaded option.			

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/