

DATA SHEET

ANTI-SULFURATED CHIP RESISTORS
AUTOMOTIVE GRADE

AF series 5%, 1%, 0.5%

sizes 0100/0201/0402/0603/0805/1206/1210/1218/2010/2512

RoHS compliant & Halogen free

AF SERIES 0100 to 2512

SCOPE

This specification describes AF0100 to AF2512 chip resistors with anti-sulfuration capabilities.

APPLICATIONS

- Industrial Equipment
- Power Application
- Networking Application
- High-end Computer & Multimedia Electronics in high sulfur environment
- Automotive electronics

FEATURES

- · AEC-Q200 qualified
- Superior resistance against sulfur containing atmosphere
- Halogen free product and production
- · RoHS compliant
- Reduces environmentally hazardous waste
- High component and equipment reliability
- Saving of PCB space
- Moisture sensitivity level: MSL I
- 50ppm available

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AF XXXX X X X XX XXX L (1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0100/0201/0402/0603/0805/1206/1210/1218/2010/2512

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $J = \pm 5\%$ (for jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed plastic tape reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

 $E = \pm 50 \text{ ppm/°C}$

(5) TAPING REEL

07 = 7 inch dia, Reel

13 = 13 inch dia. Reel

7W = 7 inch dia. Reel & 2 x standard power

(6) RESISTANCE VALUE

There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point. Detailed resistance rules are displayed in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is system default code for ordering only (Note)

number Resistance coding r	5 ,
Nesistance coding i	ule Lxample
XRXX (I to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	IOR = IO Ω 97R6 = 97.6 Ω
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (Ι to 9.76 ΚΩ)	IK = 1,000 Ω 9K76 = 9760 Ω
XMXX (1 to 9.76 M Ω)	$IM = 1,000,000 \Omega$ $9M76 = 9,760,000 \Omega$

Resistance rule of global part

ORDERING EXAMPLE

The ordering code for an AF0402 chip resistor, value $100 \text{ K}\Omega$ with $\pm 1\%$ tolerance, supplied in 7-inch tape reel with 10Kpcs quantity is: AF0402FR-07100KL.

NOTE

- I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed

Chip Resistor Surface Mount | AF | SERIES | 0100 to 2512

AF0100 / AF0201 / AF0402

No marking

AF0603 / AF0805 / AF1206 / AF1210 / AF2010 / AF2512

E-24 series: 3 digits, $\pm 5\%$, $\geq 10\Omega$

First two digits for significant figure and 3rd digit for number of zeros

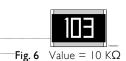
AF0603

E-24 series: 3 digits, ±1%

One short bar under marking letter

E-96 series: 3 digits, ±1%

First two digits for E-96 marking rule and 3rd letter for number of zeros


AF0805 / AF1206 / AF1210 / AF2010 / AF2512

Both E-24 and E-96 series: 4 digits, ±1%

First three digits for significant figure and 4th digit for number of zeros

AF1218

E-24 series: 3 digits, ±5%

First two digits for significant figure and 3rd digit for number of zeros

Both E-24 and E-96 series: 4 digits, $\pm 1\%$

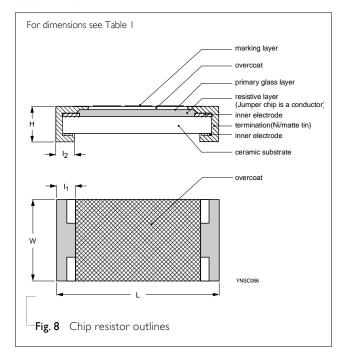
First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please see special data sheet "Chip resistors marking". Marking of AF series is the same as RC series

CONSTRUCTION

The resistors are constructed on top of a high grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a glass.


The composition of the glaze is adjusted to give the approximate required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added. See fig.8

DIMENSIONS

Table I	For outlines	see fig 8
Iable	I OI Outilites	see lig. 0

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
AF0100	0.40±0.02	0.20±0.02	0.14±0.02	0.10±0.03	0.10±0.03
AF0201	0.60±0.03	0.30±0.03	0.23±0.03	0.12±0.05	0.15±0.05
AF0402	1.00±0.05	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
AF0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
AF0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
AF1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.50±0.20
AF1210	3.10±0.10	2.60±0.15	0.57±0.10	0.45±0.20	0.50±0.20
AF1218	3.10±0.10	4.60±0.10	0.57±0.10	0.45±0.20	0.50±0.20
AF2010	5.00±0.10	2.50±0.15	0.57±0.10	0.55±0.20	0.55±0.20
AF2512	6.35±0.10	3.20±0.15	0.57±0.10	0.60±0.20	0.60±0.20

OUTLINES

YAGEO

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS								
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria		
AF0100	1/32 W	–55 °C to 125°C	15V	30V	30V	5% (E24) $10\Omega \le R \le 1M\Omega$ 1% (E24/E96) $10\Omega \le R \le 1M\Omega$ Jumper < $50m\Omega$	$10\Omega \le R < 100\Omega$ $\pm 300 \text{ ppm/°C}$ $100\Omega \le R \le \text{IM}\Omega$ $\pm 200 \text{ ppm/°C}$	Rated Current 0.5A Max. Current 1.0A		
AF0201	1/20 W		25V	50V	50V	5% (E24) $1\Omega \le R \le 10M\Omega$ 0.5%, 1% (E24/E96) $1\Omega \le R \le 10M\Omega$ Jumper < 50mΩ	$I\Omega \le R \le I0\Omega$ -100/+350 ppm/°C $I0\Omega < R \le I0M\Omega$ ±200 ppm/°C	Rated Current 0.5A Max. Current 1.0A		
AF0402	1/16 W	-	50V	100V	100V	5% (E24) $1Ω ≤ R ≤ 22MΩ$ $0.5%$, $1%$ (E24/E96) $1Ω ≤ R ≤ 10MΩ$ Jumper $< 50mΩ$	$\begin{split} & \Omega \leq R \leq 10\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 0\Omega < R \leq 10\text{M}\Omega \\ & \pm 100 \text{ ppm/°C} \\ & 0M\Omega < R \leq 22\text{M}\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 100\Omega \leq R \leq 1\text{M}\Omega \\ & \pm 50 \text{ ppm/°C} \end{split}$	Rated Current I A Max. Current 2A		
•	1/8W	-	75V	100V	100V	5% (E24) $1\Omega \le R \le 10M\Omega$ 0.5%, $1%$, (E24/E96) $1\Omega \le R \le 10M\Omega$	$I\Omega \le R \le I0\Omega$ $\pm 200 \text{ ppm/°C}$ $I0\Omega < R \le I0M\Omega$ $\pm 100 \text{ ppm/°C}$			
AF0603	1/10 W	- -55 °C to 155 °C	75V	150V	150V	5% (E24) $1\Omega \le R \le 22M\Omega$ 0.5%, 1% (E24/E96) $1\Omega \le R \le 10M\Omega$ Jumper < 50mΩ	$\begin{split} & \Omega \leq R \leq 10\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \\ & 10\Omega \leq R \leq 10\text{M}\Omega \\ & \pm 100 \text{ ppm/}^{\circ}\text{C} \\ & 10\text{M}\Omega \leq R \leq 22\text{M}\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \\ & 10\text{M}\Omega \leq R \leq 10\text{M}\Omega \\ & \pm 50 \text{ ppm/}^{\circ}\text{C} \end{split}$	Rated Current I A Max. Current 2A		
	1/5 W		75V	150V	150V	5% (E24) $1\Omega \le R \le 10M\Omega$ 0.5%, $1%$, (E24/E96) $1\Omega \le R \le 10M\Omega$	$I\Omega \le R \le I0\Omega$ $\pm 200 \text{ ppm/°C}$ $I0\Omega < R \le I0M\Omega$ $\pm 100 \text{ ppm/°C}$			
AF0805	1/8 W	-	150V	300V	300V	5% (E24) $1Ω ≤ R ≤ 22MΩ$ $0.5%$, $1%$ (E24/E96) $1Ω ≤ R ≤ 10MΩ$ Jumper $< 50mΩ$	$\begin{split} & \Omega \leq R \leq 10\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 0\Omega < R \leq 10\text{M}\Omega \\ & \pm 100 \text{ ppm/°C} \\ & 0M\Omega < R \leq 22\text{M}\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 100\Omega \leq R \leq 10\text{M}\Omega \\ & \pm 50 \text{ ppm/°C} \end{split}$	Rated Current 2A Max. Current 5A		
	1/4 W	-	150V	300V	300V	5% (E24) $1\Omega \le R \le 10M\Omega$ 0.5%, $1%$, (E24/E96) $1\Omega \le R \le 10M\Omega$	$I\Omega \le R \le I0\Omega$ $\pm 200 \text{ ppm/°C}$ $I0\Omega < R \le I0M\Omega$ $\pm 100 \text{ ppm/°C}$			
AF1206	1/4 W	-	200V	400V	500V	5% (E24) $1Ω ≤ R ≤ 22MΩ$ $0.5%$, $1%$ (E24/E96) $1Ω ≤ R ≤ 10MΩ$ Jumper $< 50mΩ$	$\begin{split} & \Omega \leq R \leq \Omega\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \\ & \Omega\Omega < R \leq \Omega\text{M}\Omega \\ & \pm 100 \text{ ppm/}^{\circ}\text{C} \\ & \Omega\Omega < R \leq 22\text{M}\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \\ & \Omega\Omega\Omega \leq R \leq \Omega\text{M}\Omega \\ & \pm 50 \text{ ppm/}^{\circ}\text{C} \end{split}$	Rated Current 2A Max. Current 10A		
	1/2 W		200V	400V	500V	5% (E24) $1\Omega \le R \le 10M\Omega$ 0.5%, 1%, (E24/E96) $1\Omega \le R \le 10M\Omega$	$I\Omega \le R \le I0\Omega$ $\pm 200 \text{ ppm/}^{\circ}\text{C}$ $I0\Omega \le R \le I0M\Omega$ $\pm 100 \text{ ppm/}^{\circ}\text{C}$			

Chip Resistor Surface Mount AF SERIES 0100 to 2512

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS						
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AF1210	1/2 W		200V	500V	500V	$5\% \text{ (E24)}$ $1\Omega \leq R \leq 10\text{M}\Omega$ $0.5\%, 1\% \text{ (E24/E96)}$ $1\Omega \leq R \leq 10\text{M}\Omega$ $\text{Jumper} < 50\text{m}\Omega$	$\begin{split} & 1\Omega \leq R \leq 10\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 10\Omega \leq R \leq 10\text{M}\Omega \\ & \pm 100 \text{ ppm/°C} \\ & 100\Omega \leq R \leq 1\text{M}\Omega \\ & \pm 50 \text{ ppm/°C} \end{split}$	Rated Current 2A Max. Current 10A
AF1218	ΙW	–55 °C to 155 °C −	200V	500V	500V	$5\% \text{ (E24)}$ $I\Omega \leq R \leq IM\Omega$ $0.5\%, I\% \text{ (E24/E96)}$ $I\Omega \leq R \leq IM\Omega$ $Jumper < 50m\Omega$	$\begin{split} & \Omega \leq R \leq 10\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 0\Omega < R \leq 1\text{M}\Omega \\ & \pm 100 \text{ ppm/°C} \\ & 00\Omega \leq R \leq 2.2\text{M}\Omega \\ & \pm 50 \text{ ppm/°C} \end{split}$	Rated Current 2A Max. Current 10A
AF2010	3/4 W		200V	500V	500V	$5\% \text{ (E24)}$ $I\Omega \leq R \leq I0M\Omega$ $0.5\%, I\% \text{ (E24/E96)}$ $I\Omega \leq R \leq I0M\Omega$ $\text{Jumper} < 50m\Omega$	$\begin{split} & \Omega \le R \le 10\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \\ & 0\Omega < R \le 10\text{M}\Omega \\ & \pm 100 \text{ ppm/}^{\circ}\text{C} \\ & 00\Omega \le R \le 10\text{M}\Omega \\ & \pm 50 \text{ ppm/}^{\circ}\text{C} \end{split}$	Rated Current 2A Max. Current 10A
AF2512	ΙW		200V	500V	500V	$\begin{array}{c} 5\% \ (\text{E24}) \\ \text{I} \ \Omega \leq \text{R} \leq \text{IOM} \Omega \\ \text{0.5\%, I\% (E24/E96)} \\ \text{I} \ \Omega \leq \text{R} \leq \text{IOM} \Omega \\ \text{Jumper} < 50 \text{m} \Omega \end{array}$	$\begin{split} & \Omega \le R \le 10\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 10\Omega < R \le 10\text{M}\Omega \\ & \pm 100 \text{ ppm/°C} \\ & 100\Omega \le R \le 10\text{M}\Omega \\ & \pm 50 \text{ ppm/°C} \end{split}$	Rated Current 2A Max. Current 10A

Chip Resistor Surface Mount | AF | SERIES

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles of AF-series is the same as RC-series. Please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AF0100	AF0201	AF0402	AF0603 AF0805 AF1206	AF1210	AF1218 AF2010 AF2512
Paper taping reel (R)	7" (178 mm)	20,000	10,000/20,000	10,000/20,000	5,000	5,000	
	13" (330 mm)		50,000	50,000	20,000	20,000	
Embossed taping reel (K)	7" (178 mm)			==			4,000

NOTE

1. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

AF0100 Range: -55°C to + 125°C

AF0201 - AF2512 Range: -55°C to + 155°C

POWER RATING

Each type rated power at 70°C:

AF0100=1/32W (0.03125W)

AF0201=1/20W (0.05W)

AF0402=1/16 W (0.0625W); 1/8W (0.125W)

AF0603=1/10 W (0.1W); 1/5W (0.2W)

AF0805=1/8 W (0.125W); 1/4W (0.25W)

AFI206=1/4 W (0.25W); 1/2W (0.5W)

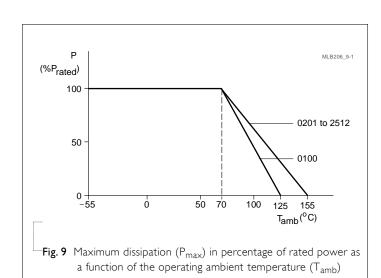
AF1210=1/2W (0.5W)

AF1218=1W

AF2010=3/4W (0.75W)

AF2512=1W

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Coefficient of Resistance (T.C.R.)	IEC 60115-1 4.8 MIL-STD-202 Method 304	At $+25/-55^{\circ}$ C and $+25/+125^{\circ}$ C Formula: T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$ Where $t_1=+25^{\circ}$ C or specified room temperature $t_2=-55^{\circ}$ C or $+125^{\circ}$ C test temperature	Refer to table 2
		R_1 =resistance at reference temperature in ohms R_2 =resistance at test temperature in ohms	
Life/Endurance	IEC 60115-1 4.25 MIL-STD-202 Method 108	At 70±2°C for 1,000 hours, RCWV applied for 1.5 hours on, 0.5 hour off, still-air required	0100: $\pm (3.0\% + 0.05 \Omega)$ Others: $\pm (1.0\% + 0.05 \Omega)$ <100 m Ω for Jumper
High Temperature Exposure	MIL-STD-202 Method 108	0100: 1,000 hours at 125°C Others: 1,000 hours at 155±3°C unpowered	0100: \pm (2.0%+0.05 Ω) <50 m Ω for Jumper Others: \pm (1.0%+0.05 Ω) <100 m Ω for Jumper
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25°C / 65°C 95% R.H, without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts	0100: $\pm (2.0\% + 0.05 \ \Omega)$ <50 m Ω for Jumper Others: $\pm (0.5\% + 0.05 \ \Omega)$ for 0.5%, 1% tol. $\pm (1.0\% + 0.05 \ \Omega)$ for 5% tol. <100 m Ω for Jumper
Thermal Shock	MIL-STD-202 Method 107	-55 / +125°C Number of cycles required is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes	0100: $\pm (1.0\% + 0.05 \ \Omega)$ <50 m Ω for Jumper Others: $\pm (0.5\% + 0.05 \ \Omega)$ for 0.5%, 1% tol. $\pm (1\% + 0.05 \ \Omega)$ for 5% tol. <100 m Ω for Jumper
Short Time Overload	IEC60115-1 4.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 seconds at room temperature	0100: $\pm(2.0\%+0.05~\Omega)$ Others: $\pm(1.0\%+0.05~\Omega)$ <50 m Ω for Jumper No visible damage
Bending	IEC 60115-1 4.33	Chips mounted on a 90 mm glass epoxy resin PCB (FR4) Bending: 0100/0201/0402: 5 mm 0603/0805: 3 mm 1206 & above: 2 mm Bending time: 60±5 seconds	$\pm (1.0\% + 0.05~\Omega)$ 0100: <50 m Ω for Jumper Others: <100 m Ω for Jumper No visible damage

Chip Resistor Surface Mount | AF | SERIES | 0100 to 2512

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Biased Humidity	MIL-STD-202 method 103	I,000 hours; 85°C /85%R.H., I0% of operating power. Measurement at 24±4 hours after test conclusion.	$0100: \pm (5\% + 0.05\Omega)$ <50 m Ω for Jumper Others: $I\Omega \le R \le IM\Omega: \pm (3\% + 0.05\Omega)$ $IM\Omega < R \le I0M\Omega: \pm (5\% + 0.05\Omega)$ <100 m Ω for Jumper
Solderability - Resistance to Soldering Heat	IEC 60115-1 4.18 MIL-STD-202 Method 215	Condition B, no pre-heat of samples Lead-free solder, 260±5°C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	0100: \pm (1.0%+0.05 Ω) Others: \pm (0.5%+0.05 Ω) for 0.5%, 1% tol. \pm (1.0%+0.05 Ω) for 5% tol. <50 m Ω for Jumper No visible damage
- Wetting	J-STD-002	Electrical test not required Magnification 10X SMD conditions: Others: (a) Method B, aging 4 hours at 155°C dry heat, lead-free solder bath at 245°C (b) Method B, dipping at 215°C for 3 seconds 0100: Ist step: Method B, aging 4 hours at 155°C dry heat 2nd step: Lead free solder bath at 245°C	Well tinned (≥95% covered) No visible damage
FOS	ASTM-B-809-95* * Modified	Sulfur 750 hours, 105°C. unpowered	0100: \pm (5.0%+0.05Ω) Others: \pm (4.0%+0.05Ω) <100 mΩ for Jumper

Chip Resistor Surface Mount | AF | SERIES | 0100 to 2512

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Jan. 26, 2022	-	- Upgrade the working voltage of 0402 double power to 75V
Version 8	Mar. 26, 2021	-	- Add TCR 50ppm and size 01005 extend
Version 7	Nov. 1, 2019	-	- Add in AF double power
Version 6	Sep. 05, 2019	-	- Updated dimensions
Version 5	Jun. 21, 2016	-	- Update test and requirement
Version 4	Dec. 24, 2015	-	- Update Dielectric Withstanding Voltage& Resistance value
Version 3	Apr. 01, 2015	-	- Modified test and requirements
Version 2	Nov. 20, 2014	-	- Tests and requirement update
Version I	Sep. 27, 2013	-	- Size 0201/1210/1218/2010/2512 extend
Version 0	Jan 07, 2011	-	- First issue of this specification

[&]quot;YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."