Renesns

$512 \mathrm{~K} \times 36,1 \mathrm{M} \times 18$
 2.5V Synchronous ZBT ${ }^{\text {M }}$ SRAMs
 71775602
 2.5V I/O, Burst Counter 71775802 Pipelined Outputs

Features

- $512 \mathrm{~K} \times 36,1 \mathrm{M} \times 18$ memory configurations
- Supports high performance system speed - 200 MHz (3.2 ns Clock-to-Data Access)
- ZBT ${ }^{\text {TM }}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control $\overline{\mathrm{OE}}$
- Single R/W (READ/WRITE) control pin
- Positive clock-edge triggered address, data, and control signal registers for fully pipelined applications
- 4-word burst capability (interleaved or linear)
- Individual byte write ($\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}$) control (May tie active)
- Three chip enables for simple depth expansion
- 2.5 V power supply ($\pm 5 \%$)
- 2.5 V I/O Supply (VDDQ)
- Power down controlled by ZZ input
- Boundary Scan JTAG Interface (IEEE 1149.1 Compliant)
- Packaged in a JEDEC standard 100-pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available for selected speeds
- Green parts available, see ordering information

Functional Block Diagram -512K x 36

[^0]
Description

The IDT71T75602/802 are2.5V high-speed18,874,368-bit(18 Megabit) synchronous SRAMs. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus, they have been given the name $\mathrm{ZBT}^{\top \mathrm{M}}$, or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, and two cycles later the associated data cycle occurs, be it read or write.

The IDT71T75602/802 contain datal/O, address and control signal registers. Outputenable is the only asynchronous signal and can be used to disable the outputs at any given time.

A Clock Enable $\overline{\mathrm{CEN}}$ pin allows operation of the IDT71T75602/802 to be suspended as long as necessary. All synchronous inputs are ignored when($\overline{\mathrm{CEN}}$) is high and the internal device registers will hold their previous values.

There are three chip enable pins ($\overline{\mathrm{CE}}_{1}, \mathrm{CE} 2, \overline{\mathrm{CE}}_{2}$) that allow the user to deselect the device when desired. If any one of these three is not asserted whenADV/(̄) islow, no new memory operation can be initiated.

However, any pending data transfers (reads or writes) will be completed. The databuswill tri-statetwo cycles after the chipisdeselected or a write is initiated.

The IDT71T75602/802 have an on-chip burst counter. In the burst mode, the IDT71T75602/802 can provide four cycles of data for a aingle address presented to the SRAM. The order of the burst sequence is defined by the $\overline{\mathrm{LBO}}$ input pin. The $\overline{\mathrm{LBO}}$ pin selects between linear and interleaved burst sequence. The ADV/LD signal is used to load a new external address (ADV/ $\overline{\mathrm{D}}=\mathrm{LOW}$) or increment the internal burst counter (ADV/ $\overline{\mathrm{LD}}=\mathrm{HIGH}$).

The IDT71T75602/802 SRAMs utilize a high-performance 2.5 V CMOS process, and are packaged in a JEDEC Standard $14 \mathrm{~mm} x$ 20mm100pinthin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA).

Functional Block Diagram - 1M x 18

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with

Pin Description Summary

A0-A19	Address Inputs	Input	Synchronous
$\overline{\mathrm{C}} \overline{1}_{1}, \mathrm{CE} 2, \mathrm{C}_{2}$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
R/W	Read/Write Signal	Input	Synchronous
$\overline{C E N}$	Clock Enable	Input	Synchronous
$\overline{\mathrm{BW}}_{1}, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{~B}}_{3}, \overline{\mathrm{BW}}_{4}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV/LD	Advance burst address / Load new address	Input	Synchronous
$\overline{\text { LBO }}$	Linear / Interleaved Burst Order	Input	Static
TMS	Test Mode Select	Input	N/A
TDI	Test Data Input	Input	N/A
TCK	Test Clock	Input	N/A
TDO	Test Data Input	Output	N/A
TRST	JTAG Reset (Optional)	Input	Asynchronous
ZZ	Sleep Mode	Input	Synchronous
//O0-1/O31, //OP1-//Op4	Data Input / Output	//0	Synchronous
Vdd, Vddo	Core Power, I/O Power	Supply	Static
Vss	Ground	Supply	Static

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	I/0	Active	Description
A0-A19	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/LD low, $\overline{\mathrm{CEN}}$ low, and true chip enables.
ADV/LD	Advance / Load	1	N/A	ADV/ $\overline{\mathrm{D}}$ is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/LD is low with the chip deselected, any burst in progress is terminated. When ADV/ $\overline{\mathrm{LD}}$ is sampled high then the internal burst counter is advanced for any burst that was in progress. The external addresses are ignored when ADV/ $\overline{\mathrm{LD}}$ is sampled high.
R / \bar{W}	Read / Write	1	N/A	R / \bar{W} signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place two clock cycles later.
$\overline{C E N}$	Clock Enable	1	LOW	Synchronous Clock Enable Input. When $\overline{\mathrm{CEN}}$ is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of CEN sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, $\overline{C E N}$ must be sampled low at rising edge of clock.
$\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4$	Individual Byte Write Enables	I	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (when $\mathrm{R} / \overline{\mathrm{W}}$ and $\mathrm{ADV} / \overline{\mathrm{LD}}$ are sampled low) the appropriate byte write signal $\left(\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}\right)$ must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when R / \bar{W} is sampled high. The appropriate byte(s) of data are written into the device two cycles later. $\overline{B W}_{1}-\overline{B W}_{4}$ can all be tied low if always doing write to the entire 36 -bit word.
$\overline{\mathrm{C}} \bar{E}_{1}, \overline{\mathrm{C}} \mathrm{E}_{2}$	Chip Enables	1	LOW	Synchronous active low chip enable. $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are used with CE_{2} to enable the IDT7175602/802 ($\overline{\mathrm{C}}_{1}$ or $\overline{\mathrm{C}} \bar{E}_{2}$ sampled high or CE2 sampled low) and ADV/LD low at the rising edge of clock, initiates a deselect cycle. The $Z_{B T}{ }^{T M}$ has a two cycle deselect, i.e., the data bus will tri-state two clock cycles after deselect is initiated.
CE 2	Chip Enable	1	HIGH	Synchronous active high chip enable. CE 2 is used with $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ to enable the chip. CE 2 has inverted polarity but otherwise identical to $\overline{\mathrm{C}}{ }_{1}$ and $\overline{\mathrm{C}}_{2}$.
CLK	Clock	1	N/A	This is the clock input to the IDT71T75602/802. Except for $\overline{\mathrm{OE}}$, all timing references for the device are made with respect to the rising edge of CLK.
$\begin{gathered} \text { //Oo-I/O31 } \\ \text { //Op1-//Op4 } \end{gathered}$	Data Input/Output	I/O	N/A	Synchronous data input/output (I/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Burst order selection input. When $\overline{\mathrm{LBO}}$ is high the Interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is low the Linear burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input and it must not change during device operation.
$\overline{\mathrm{OE}}$	Output Enable	1	LOW	Asynchronous output enable. $\overline{\mathrm{OE}}$ must be low to read data from the $717 \mathrm{~T} 502 / 802$. When $\overline{\mathrm{OE}}$ is high the I/O pins are in a high-impedance state. $\overline{\mathrm{EE}}$ does not need to be actively controlled for read and write cycles. In normal operation, $\overline{\mathrm{OE}}$ can be tied low.
TMS	Test Mode Select	1	N/A	Gives input command for TAP controller. Sampled on rising edge of TDK. This pin has an internal pullup.
TDI	Test Data Input	1	N/A	Serial input of registers placed between TDI and TDO. Sampled on rising edge of TCK. This pin has an internal pullup.
TCK	Test Clock	1	N/A	Clock input of TAP controller. Each TAP event is clocked. Test inputs are captured on rising edge of TCK, while test outputs are driven from the falling edge of TCK. This pin has an internal pullup.
TDO	Test Data Output	0	N/A	Serial output of registers placed between TDI and TDO. This output is active depending on the state of the TAP controller.
$\overline{\text { TRST }}$	JTAG Reset (Optional)	1	LOW	Optional asynchronous JTAG reset. Can be used to reset the TAP controller, but not required. JTAG reset occurs automatically at power up and also resets using TMS and TCK per IEEE 1149.1. If not used TRST can be left floating. This pin has an internal pullup. Only available in BGA package.
Z	Sleep Mode	1	HIGH	Synchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71T75602/802 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode. This pin has an internal pulldown.
VdD	Power Supply	N/A	N/A	2.5 V core power supply.
VdDQ	Power Supply	N/A	N/A	2.5V I/O Supply.
Vss	Ground	N/A	N/A	Ground.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Pin Configuration - 512K x 36, PKG100

Top View 100 TQFP

NOTES:

1. Pins 14,16 , and 66 do nothave to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. Pins 38,39 and 43 will be pulled internally to VDDifnotactively driven. To disable the TAP controller withoutinterfering with normal operation, several settings are possible. Pins 38,39 and 43 could be tied to VDDor Vss and pin 42 should be leftunconnected. Or all JTAG inputs(TMS, TDI and TCK) pins 38,39 and 43 could be leftunconnected "NC" and the JTAG circuit will remain disabled from power up.

Pin Configuration - $1 \mathrm{M} \times 18$, PKG100

Top View
 100 TQFP

NOTES:

1. Pins 14,16 , and 66 do nothave to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. Pins 38,39 and 43 will be pulled internally to Vddifnotactively driven. To disabletheTAP controllerwithoutinterfering with normal operation, several settings are possible. Pins 38,39 and 43 could betiedto VDDor Vss and pin 42 should be leftunconnected. Or all JTAG inputs(TMS, TDI and TCK) pins 38, 39 and 43 could be leftunconnected "NC" and the JTAG circuitwill remaindisabled from powerup.

Pin Configuration - 512K X 36, BG119, BGG119(1,2,4)

A	VDDQ	A6	A_{4}	A18	As	A16	VDDQ
B	NC	CE_{2}	A_{3}	ADV/LD	A9	$\overline{\mathrm{CE}} 2$	NC
C	NC	A_{7}	A_{2}	VDD	A12	A15	NC
D	//O16	//Ор3	Vss	NC	Vss	VOp2	$1 / \mathrm{O}_{15}$
E	//O17	I/O18	Vss	$\overline{\mathrm{C}}_{1}$	Vss	//O13	//O14
F	VDDQ	//O19	Vss	$\overline{\mathrm{OE}}$	Vss	//O12	VDDQ
G	//O20	$1 / 0_{21}$	$\overline{B W}_{3}$	A17	$\overline{\mathrm{BW}}_{2}$	//011	//O10
H	1/022	//O23	Vss	R / \bar{W}	Vss	1/O9	1/08
J	VDDQ	VDD	VDD ${ }^{(1)}$	VDD	VDD ${ }^{(1)}$	VDD	VdDQ
K	I/O24	// O_{26}	Vss	CLK	Vss	1/06	$1 / \mathrm{O}_{7}$
L	I/O25	//O27	$\overline{B W}_{4}$	NC	$\overline{\mathrm{BW}}_{1}$	$1 / \mathrm{O}_{4}$	//O5
M	VDDQ	1/028	Vss	$\overline{\text { CEN }}$	Vss	$1 / \mathrm{O}_{3}$	VDDQ
N	1/029	//О30	Vss	A_{1}	Vss	$1 / \mathrm{O}_{2}$	$1 / 0_{1}$
P	I/O31	I/Op4	Vss	A0	Vss	//Op1	I/O0
R	NC	A5	$\overline{\text { LBO }}$	VDD	VDD ${ }^{(1)}$	A13	NC
T	NC	NC	A10	Al1	A14	NC	ZZ
U	VDDQ	NC/TMS(2)	NC/TDI(2)	NC/TCK ${ }^{(2)}$	NC/TDO ${ }^{(2)}$	$\mathrm{NC} / \overline{\text { TRST }} \mathrm{T}^{23}$	VDDQ
	Top View ${ }^{5313 \text { tbl } 256}$						

Pin Configuration - 1M X 18, BG119, BGG119(1,2,4)

	1	2	3	4	5	6	7
A	VDDQ	A_{6}	A_{4}	A19	As	A16	VDDQ
B	NC	CE_{2}	A_{3}	ADV/ $\overline{\mathrm{D}}$	A9	$\overline{C E}_{2}$	NC
C	NC	A7	A_{2}	VDD	A13	A17	NC
D	I/O8	NC	Vss	NC	Vss	//Op1	NC
E	NC	1/09	Vss	$\overline{\mathrm{C}}_{1}$	Vss	NC	$1 / 0_{7}$
F	VDDQ	NC	Vss	$\overline{\mathrm{OE}}$	Vss	//06	VDDQ
G	NC	//O10	$\overline{B W}_{2}$	A18	Vss	NC	//O5
H	//O11	NC	Vss	R / \bar{W}	Vss	$1 / \mathrm{O}_{4}$	NC
J	VDDQ	VDD	VDD ${ }^{(1)}$	VDD	VDD ${ }^{(1)}$	VDD	VDDQ
K	NC	I/O12	Vss	CLK	Vss	NC	$1 / \mathrm{O}_{3}$
L	1/O13	NC	Vss	NC	$\overline{B W}_{1}$	$1 / \mathrm{O}_{2}$	NC
M	VDDQ	//O14	Vss	$\overline{C E N}$	Vss	NC	VDDQ
N	//O15	NC	Vss	A1	Vss	$1 / \mathrm{O}_{1}$	NC
P	NC	//Op2	VSS	Ao	Vss	NC	$1 / \mathrm{O}_{0}$
R	NC	A5	$\overline{\text { LBO }}$	VDD	VDD ${ }^{(1)}$	A12	NC
T	NC	A10	A15	NC	A14	A11	ZZ
U	VDDQ	NC/TMS ${ }^{(2)}$	NC/TDI ${ }^{(2)}$	NC/TCK ${ }^{(2)}$	NC/TDO ${ }^{(2)}$	$\mathrm{NC} / \overline{\mathrm{TRST}}{ }^{2}{ }^{23}$	VDDQ
Top View ${ }^{5313 \text { bl } 25 \mathrm{c}}$							

NOTES:

1. J 3 , R5, and J 5 do not have to be directly connected to VDD as long as the input voltage is $\geq \mathrm{V}_{\mathrm{IH}}$.
2. $\mathrm{U} 2, \mathrm{U}, \mathrm{U}, \mathrm{a}$ and U 6 will be pulled internally to VDD if not actively driven. To disable the TAP controller without interfering with normal operation, several settings are possible. U2, U3, U4 and U6 could be tied to VDD or VSS and U5 should be left unconnected. Or all JTAG inputs(TMS, TDI, and TCK and TRST) U2, U3, U4 and U6 could be leftunconnected " $N C$ " and the JTAG circuitwill remain disabled from power up.
3. $\overline{T R S T}$ is offered as an optional JTAG reset if required in the application. If not needed, can be left floating and will internally be pulled to VDD.
4. This text does not indicate orientation of actual part-marking.

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial	Industrial	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +3.6	-0.5 to +3.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VdD	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	-0.5 to VdD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	-0.5 to VDDQ +0.5	V
TA $^{(7)}$	Operating Ambient Temperature	0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$
TBAAS	Temperature Under Bias	-55 to +125	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	2.0	W
lOUT	DC Output Current	50	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. During production testing, the case temperature equals TA.

Recommended Operating

 Temperature and Supply Voltage| Grade | Ambient
 Temperature
 1$)$ | Vss | VDD | VDDQ |
| :---: | :---: | :---: | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | OV | $2.5 \mathrm{~V} \pm 5 \%$ | $2.5 \mathrm{~V} \pm 5 \%$ |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | OV | $2.5 \mathrm{~V} \pm 5 \%$ | $2.5 \mathrm{~V} \pm 5 \%$ |

NOTE:

1. During production testing, the case temperature equals the ambient temperature.

100 Pin TQFP Capacitance

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	5	pF
Clo	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

119 Pin BGA Capacitance

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=3 \mathrm{dV}$	7	pF
C/o	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

NOTE:

1. This parameter is guaranteed by device characterization, butnotproductiontested.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	2.375	2.5	2.625	V
VDDQ	I/O Supply Voltage	2.375	2.5	2.625	V
VSS	Ground	0	0	0	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage - Inputs	1.7	-	$\mathrm{VDD}^{2}+0.3$	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage - //O	1.7	-	$\mathrm{VDDQ}^{+0.3}$	V
VIL	Input Low Voltage	$-0.3^{(1)}$	-	0.7	V

NOTE:

1. $\operatorname{VIL}(\min)=.-0.8 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with
ZBT $^{\text {M }} 2.5 \mathrm{~V}$ I/O, Burst Counter, and Pipelined Outputs

Synchronous Truth Table ${ }^{(1)}$

$\overline{C E N}$	R/W	$\begin{aligned} & \text { Chip } \\ & \text { Enable } \end{aligned}$	ADVILD	$\overline{\mathrm{BW}} \mathrm{x}$	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	$\begin{gathered} \text { I/O } \\ \text { (2 cycles later) } \end{gathered}$
L	L	Select	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	Select	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	Deselect	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	Hiz
L	X	X	H	X	X	DESELECT / NOOP	NOOP	Hiz
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $\mathrm{L}=\mathrm{V}$ IL, $\mathrm{H}=\mathrm{V}$ IH, $\mathrm{X}=$ Don't Care.
2. When $A D V / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The R / \bar{W} signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the R / \bar{W} signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{\mathrm{CE}}_{1}$, or $\overline{\mathrm{CE}}_{2}$ is sampled high or CE_{2} is sampled low) and $\mathrm{ADV} / \overline{\mathrm{D}}$ is sampled low at rising edge of clock. The data bus will tri-state two cycles after deselect is initiated.
4. When $\overline{\mathrm{CEN}}$ is sampled high at the rising edge of clock, that clock edge is blocked from propagating through the part. The state of all the internal registers and the I/Os remains unchanged.
5. To select the chip requires $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}, \mathrm{CE} 2=\mathrm{H}$ on these chip enables. Chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.
7. Q - Data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	R/W	$\overline{\mathrm{BW}}_{1}$	$\overline{\mathrm{BW}}_{2}$	$\overline{\mathrm{BW}}_{3}{ }^{(3)}$	$\overline{\mathrm{BW}}_{4}{ }^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (I/O[0:7], I/Opi) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (//O[8:15], //Op2) ${ }^{(2)}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], I/Op3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (I/O[24:31], I/Op4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $\mathrm{L}=\mathrm{V}$ IL, $\mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N/A for X18 configuration.

71T75602, 71T75802, $512 \mathrm{~K} \times 36,1 \mathrm{M} \times 18$, 2.5V Synchronous SRAMs with
$\mathrm{ZBT}^{\mathrm{TM}} 2.5 \mathrm{~V} 1 / \mathrm{O}$, Burst Counter, and Pipelined Outputs
Commercial and Industrial Temperature Ranges
Interleaved Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{VDD}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:
5313 tbl 10

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{Vss}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:
5313 tbl 11

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram ${ }^{(1)}$

CYCLE	n+29	n+30	n+31	n+32	n+33	n+34	n+35	n+36	n+37
CLOCK	4		4	4	4			4	4
ADDRESS ${ }^{(2)}$ (A0-A18)	A29	A30	A31	A32	A33	A34	A35	A36	A37
$\begin{gathered} \text { CONTROL }^{(2)} \\ (\mathrm{R} / \overline{\mathrm{W}}, \mathrm{ADV} / \overline{\mathrm{LD}}, \overline{\mathrm{BW}} \mathrm{x}) \end{gathered}$	C29	C30	C31	C32	C33	C34	C35	C36	C37
$\begin{gathered} \text { DATA }^{(\mathbf{2})} \\ \mathrm{I} / \mathrm{O}[0: 31], \mathrm{I} / \mathrm{O} \mathrm{P}[1: 4] \end{gathered}$	D/Q27	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35

NOTES:

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}}_{1}, \mathrm{CE} 2, \overline{\mathrm{CE}}_{2}$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(2)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{C}} \mathrm{E}^{(1)}$	CEN	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$1 / 0$	Comments
n	A0	H	L	L	L	X	X	X	Load read
n+1	X	X	H	X	L	X	X	X	Burst read
n+2	A1	H	L	L	L	X	L	Q0	Load read
n+3	X	X	L	H	L	X	L	Q $0+1$	Deselect or STOP
n+4	X	X	H	X	L	X	L	Q1	NOOP
n+5	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	X	Z	Burst read
n+7	X	X	L	H	L	X	L	Q2	Deselect or STOP
n+8	A3	L	L	L	L	L	L	Q2+1	Load write
n+9	X	X	H	X	L	L	X	Z	Burst write
n+10	A4	L	L	L	L	L	X	D3	Load write
n+11	X	X	L	H	L	X	X	D $3+1$	Deselect or STOP
n+12	X	X	H	X	L	X	X	D4	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	Z	Load read
n+15	A7	L	L	L	L	L	X	D5	Load write
n+16	X	X	H	X	L	L	L	Q6	Burst write
n+17	A8	H	L	L	L	X	X	D7	Load read
n+18	X	X	H	X	L	X	X	D7+1	Burst read
n+19	A9	L	L	L	L	L	L	Q8	Load write

NOTES:
5313 tbl 12

1. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.
2. $H=$ High; $L=$ Low; $X=$ Don't Care; $Z=$ High Impedance.

Read Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/L̄	$\overline{\mathrm{C} \bar{E}^{2)}}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	I / O	Comments
n	A 0	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	X	X	L	Q 0	Contents of Address Ao Read Out

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with ZBT ${ }^{\text {TM }} 2.5 \mathrm{~V}$ I/O, Burst Counter, and Pipelined Outputs

Burst Read Operation ${ }^{(1)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}}{ }^{2)}$	CEN	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/0	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
n+1	X	X	H	X	L	X	X	X	Clock Setup Valid, Advance Counter
n+2	X	X	H	X	L	X	L	Qo	Address A0 Read Out, Inc. Count
n+3	X	X	H	X	L	X	L	Q $0+1$	Address A0+1 Read Out, Inc. Count
n+4	X	X	H	X	L	X	L	Q $0+2$	Address A0+2 Read Out, Inc. Count
n+5	A1	H	L	L	L	X	L	Q $0+3$	Address A0+3 Read Out, Load A1
n+6	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
n+7	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
n+8	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

5313 tbl 14
NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=\mathrm{Low} ; \mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A 0	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	L	X	X	D 0	Write to Address A0

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Burst Write Operation ${ }^{(1)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}}{ }^{(2)}$	CEN	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{O E}$	1/0	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup
n+1	X	X	H	X	L	L	X	X	Clock Setup Valid, Inc. Count
n+2	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+3	X	X	H	X	L	L	X	Do+1	Address A0+1 Write, Inc. Count
n+4	X	X	H	X	L	L	X	Do+2	Address A0+2 Write, Inc. Count
n+5	A1	L	L	L	L	L	X	D0+3	Address A0+3 Write, Load A1
n+6	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+7	X	X	H	X	L	L	X	D1	Address A1 Write, Inc. Count
n+8	A2	L	L	L	L	L	X	D1+1	Address A1+1 Write, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with ZBT $^{\text {M }} 2.5 \mathrm{~V}$ I/O, Burst Counter, and Pipelined Outputs

Read Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{L D}$	$\bar{C} \bar{E}^{(2)}$	$\overline{\text { CEN }}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	1/0	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	H	X	X	X	Clock n+1 Ignored
$\mathrm{n}+2$	A1	H	L	L	L	X	X	X	Clock Valid
n+3	X	X	X	X	H	X	L	Q0	Clock Ignored. Data Q_{0} is on the bus.
$\mathrm{n}+4$	X	X	X	X	H	X	L	Q0	Clock Ignored. Data Q_{0} is on the bus.
$n+5$	A2	H	L	L	L	X	L	Q0	Address A0 Read out (bus trans.)
n+6	A3	H	L	L	L	X	L	Q1	Address A1 Read out (bus trans.)
$n+7$	A4	H	L	L	L	X	L	Q2	Address A2 Read out (bus trans.)

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=\mathrm{Low} ; \mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $\mathrm{CE} 2=H . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

Write Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{L D}$	$\overline{\mathrm{C}} \overline{\mathrm{E}}^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	1/0	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup.
$n+1$	X	X	X	X	H	X	X	X	Clock n+1 Ignored.
$\mathrm{n}+2$	A1	L	L	L	L	L	X	X	Clock Valid.
$\mathrm{n}+3$	X	X	X	X	H	X	X	X	Clock Ignored.
$\mathrm{n}+4$	X	X	X	X	H	X	X	X	Clock Ignored.
$\mathrm{n}+5$	A2	L	L	L	L	L	X	Do	Write Data Do
n+6	A3	L	L	L	L	L	X	D1	Write Data D1
$n+7$	A4	L	L	L	L	L	X	D2	Write Data D2

5313 tbl 18

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with
ZBT ${ }^{\text {TM }} 2.5 \mathrm{~V}$ I/O, Burst Counter, and Pipelined Outputs

Read Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	?	Deselected.
n+2	A0	H	L	L	L	X	X	Z	Address and Control meet setup.
n+3	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+4	A1	H	L	L	L	X	L	Q0	Address A0 Read out. Load A1.
n+5	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+6	X	X	L	H	L	X	L	Q1	Address A1 Read out. Deselected.
n+7	A2	H	L	L	L	X	X	Z	Address and control meet setup.
n+8	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+9	X	X	L	H	L	X	L	Q2	Address A2 Read out. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.
3. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

Write Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R / \bar{W}	ADV/̄/LD	$\overline{\mathrm{C}} \overline{\mathrm{E}}^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	1/0	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	?	Deselected.
$\mathrm{n}+2$	A0	L	L	L	L	L	X	Z	Address and Control meet setup.
$\mathrm{n}+3$	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+4	A1	L	L	L	L	L	X	Do	Address Do Write in. Load A1.
$n+5$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$n+6$	X	X	L	H	L	X	X	D1	Address D1 Write in. Deselected.
n+7	A2	L	L	L	L	L	X	Z	Address and control meet setup.
n+8	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+9	X	X	L	H	L	X	X	D2	Address D2 Write in. Deselected.

NOTES:
5313 tbl 20

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H}$. $\overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with
ZBT ${ }^{\text {M }} 2.5 \mathrm{~V}$ I/O, Burst Counter, and Pipelined Outputs
DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (VDD $=2.5 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit		
\|	니		Input Leakage Current	Vdd $=$ Max., $\mathrm{V}^{\prime \prime}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {d }}$	-	5	$\mu \mathrm{A}$
\|	니			Vdd $=$ Max., $\mathrm{V}^{\prime}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {d }}$	-	30	$\mu \mathrm{A}$
\|니		Output Leakage Current	Vout $=0 \mathrm{~V}$ to VdDQ, Device Deselected	-	5	$\mu \mathrm{A}$	
Vol	Output Low Voltage	$\mathrm{lOL}=+6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V		
VoH	Output High Voltage	$\mathrm{IOH}=-6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.0	-	V		

NOTE:

1. The $\overline{\mathrm{LBO}}, \mathrm{TMS}, \mathrm{TDI}, \mathrm{TCK}$ and $\overline{\mathrm{TRST}}$ pins will be internally pulled to VDD, and the ZZ pin will be internally pulled to Vss if they are not actively driven in the application.

DC Electrical Characteristics Over the Operating

 Temperature and Supply Voltage Range ${ }^{(1)}\left(V_{D D}=2.5 V \pm 5 \%\right)$| Symbol | Parameter | Test Conditions | 200MHz ${ }^{(4)}$ | | 166MHz | | 150MHz | | 133MHz | | 100MHz | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Com'I | Ind | Com'l | Ind | Com'I | Ind | Com'l | Ind | Com'l | Ind | |
| IDD | Operating Power Supply Current | Device Selected, Outputs Open, $A D V / \overline{L D}=X, V D D=M a x$. ,
 VIN \geq VIH or $\leq V_{\text {IL }}, f=f_{\text {max }}{ }^{(2)}$ | 275 | 295 | 245 | 265 | 215 | 235 | 195 | 215 | 175 | 195 | mA |
| ISB1 | CMOS Standby Power Supply Current | Device Deselected, Outputs Open, VdD $=$ Max., VIN \geq VhD or \leq VLD, $f=0^{(2,3)}$ | 40 | 60 | 40 | 60 | 40 | 60 | 40 | 60 | 40 | 60 | mA |
| ISB2 | Clock Running Power Supply Current | Device Deselected, Outputs Open, VDD $=$ Max., $\operatorname{VIN} \geq$ VHD or $\leq \operatorname{VLD}$, $f=$ fmax $^{(2.3)}$ | 80 | 100 | 70 | 90 | 60 | 80 | 50 | 70 | 45 | 65 | mA |
| ISB3 | Idle Power Supply Current | Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \geq \mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{DD}}=$ Max.,
 VIN \geq VHD or \leq VLD, $f=$ fmax $^{(2,3)}$ | 60 | 80 | 60 | 80 | 60 | 80 | 60 | 80 | 60 | 80 | mA |
| Izz | Full Sleep Mode Supply Current | Device Selected, Outputs Open, | 40 | 60 | 40 | 60 | 40 | 60 | 40 | 60 | 40 | 60 | mA |

NOTES:

1. All values are maximum guaranteed values.
2. At $f=f$ max, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c ; f=0$ means no input lines are changing.
3. For $/ / \mathrm{Os} \mathrm{V}$ HD $=\mathrm{V} D \mathrm{DQ}-0.2 \mathrm{~V}, \mathrm{~V} L \mathrm{D}=0.2 \mathrm{~V}$. For other inputs $\mathrm{V} h \mathrm{D}=\mathrm{V} D \mathrm{D}-0.2 \mathrm{~V}, \mathrm{~V} L \mathrm{D}=0.2 \mathrm{~V}$.
4. 200 MHz is for 71 T 75802 only.

AC Test Load

Figure 1. AC TestLoad

AC Test Conditions

Input Pulse Levels	0 to 2.5 V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	$(\mathrm{VDDQ} / 2)$
Output Timing Reference Levels	$(\mathrm{VDDQ} / 2)$
AC Test Load	See Figure 1

Figure 2. Lumped Capacitive Load, Typical Derating

71T75602, 71T75802, $512 \mathrm{~K} \times 36,1 \mathrm{M} \times 18$, 2.5V Synchronous SRAMs with ZBT $^{\text {TM }} 2.5 \mathrm{~V}$ I/O, Burst Counter, and Pipelined Outputs

AC Electrical Characteristics

(VDD $=2.5 \mathrm{~V}+1-5 \%$, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	200MHz ${ }^{(6)}$		166MHz		150MHz		133MHz		100MHz		Unit
		Min.	Max.									
tcyc	Clock Cycle Time	5	-	6	-	6.7	-	7.5	-	10	-	ns
tF ${ }^{(1)}$	Clock Frequency	-	200	-	166	-	150	-	133	-	100	MHz
tch ${ }^{(2)}$	Clock High Pulse Width	1.8	-	1.8	-	2.0	-	2.2	-	3.2	-	ns
tcL ${ }^{(2)}$	Clock Low Pulse Width	1.8	-	1.8	-	2.0	-	2.2	-	3.2	-	ns

Output Parameters

tcD	Clock High to Valid Data	-	3.2	-	3.5	-	3.8	-	4.2	-	5	ns
tcDC	Clock High to Data Change	1.0	-	1.0	-	1.5	-	1.5	-	1.5	-	ns
tclz $^{(3,4,5)}$	Clock High to Output Active	1.0	-	1.0	-	1.5	-	1.5	-	1.5	-	ns
tchz $^{(3,4,5)}$	Clock High to Data High-Z	1.0	3	1.0	3	1.5	3	1.5	3	1.5	3.3	ns
toe	Output Enable Access Time	-	3.2	-	3.5	-	3.8	-	4.2	-	5	ns
toLz ${ }^{(3,4)}$	Output Enable Low to Data Active	0	-	0	-	0	-	0	-	0	-	ns
toHz $^{(3,4)}$	Output Enable High to Data High-Z	-	3.2	-	3.5	-	3.8	-	4.2	-	5	ns

Set Up Times

tsE	Clock Enable Setup Time	1.4	-	1.5	-	1.5	-	1.7	-	2.0	-	ns
tSA	Address Setup Time	1.4	-	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsD	Data In Setup Time	1.4	-	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsw	Read/Write (R $\bar{W})$ Setup Time	1.4	-	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsADV	Advance/Load (ADV/(̄D) Setup Time	1.4	-	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsc	Chip Enable/Select Setup Time	1.4	-	1.5	-	1.5	-	1.7	-	2.0	-	ns
tsB	Byte Write Enable $(\overline{\mathrm{BW}} \mathrm{x})$ Setup Time	1.4	-	1.5	-	1.5	-	1.7	-	2.0	-	ns

Hold Times

the	Clock Enable Hold Time	0.4	-	0.5	-	0.5	-	0.5	-	0.5	-	ns
tha	Address Hold Time	0.4	-	0.5	-	0.5	-	0.5	-	0.5	-	ns
thD	Data In Hold Time	0.4	-	0.5	-	0.5	-	0.5	-	0.5	-	ns
thw	Read/Write (R/W) Hold Time	0.4	-	0.5	-	0.5	-	0.5	-	0.5	-	ns
thadV	Advance/Load (ADV/ $\overline{\mathrm{LD}) ~ H o l d ~ T i m e ~}$	0.4	-	0.5	-	0.5	-	0.5	-	0.5	-	ns
thc	Chip Enable/Select Hold Time	0.4	-	0.5	-	0.5	-	0.5	-	0.5	-	ns
tHB	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{x})$ Hold Time	0.4	-	0.5	-	0.5	-	0.5	-	0.5	-	ns

NOTES:

1. $\mathrm{tF}=1 / \mathrm{tcyc}$.
2. Measured as HIGH above 0.6 V DDQ and LOW below 0.4 VDDQ .
3. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
4. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.
5. To avoid bus contention, the output buffers are designed such that tcHz (device turn-off) is faster than tcLz (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tclz is a Min. parameter that is worse case at totally different test conditions (0 deg. C, 2.625 V) than tchz, which is a Max. parameter (worse case at 70 deg. C, 2.375 V)
6. 200 MHz is for 71 T 75802 only.

Timing Waveform of Read Cycle ${ }^{(1,2,3,4)}$

Timing Waveform of Write Cycles ${ }^{(1,2,3,4,5)}$

Timing Waveform of Combined Read and Write Cycles ${ }^{(1,2,3)}$

Timing Waveform of CEN Operation ${ }^{(1,2,3,4)}$

Timing Waveform of $\overline{\mathbf{C S}}$ Operation ${ }^{(1,2,3,4)}$

JTAG Interface Specification

NOTES:

1. Device inputs = All device inputs except TDI, TMS and TRST.
2. Device outputs $=$ All device outputs except TDO.
3. During power up, TRST could be driven low or not be used since the JTAG circuit resets automatically. $\overline{\text { TRST }}$ is an optional JTAG reset.

JTAG AC Electrical

Characteristics ${ }^{(1,2,3,4)}$

Symbol	Parameter	Min.	Max.	Units
tucyc	JTAG Clock Input Period	100	-	ns
tJCH	JTAG Clock HIGH	40	-	ns
tJCL	JTAG Clock Low	40	-	ns
tJR	JTAG Clock Rise Time	-	$5^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$5^{(1)}$	ns
tJRST	JTAG Reset	50	-	ns
tJRSR	JTAG Reset Recovery	50	-	ns
tJCD	JTAG Data Output	-	20	ns
tJDC	JTAG Data Output Hold	0	-	ns
tJS	JTAG Setup	25	-	ns
tJH	JTAG Hold	25	-	ns

Scan Register Sizes

Register Name	Bit Size
Instruction (IR)	4
Bypass (BYR)	1
JTAG Identification (JIDR)	32
Boundary Scan (BSR)	Note (1)

NOTE:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available by contacting your local IDT sales representative

NOTES:

1. Guaranteed by design.
2. ACTestLoad (Fig.1) onexternal outputsignals.
3. RefertoACTestConditionsstatedearlier inthis document.
4. JTAG operations occur atone speed $(10 \mathrm{MHz})$. The base device may runatany speed specifiedinthisdatasheet.

JTAG Identification Register Definitions

Instruction Field	Description	
Revision Number (31:28)	0×2	Reserved for version number.
IDT Device ID (27:12)	$0 \times 220,0 \times 222$	Defines IDT part number 71T75602 and 71T75802, respectively.
IDT JEDEC ID (11:1)	0×33	Allows unique identification of device vendor as IDT.
ID Register Indicator Bit (Bit 0)	1	Indicates the presence of an ID register.

15313 tbl 02

Available JTAG Instructions

Instruction	Description	OPCODE
EXTEST	Forces contents of the boundary scan cells onto the device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDI and TDO.	0000
SAMPLE/PRELOAD	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs ${ }^{(2)}$ and outputs ${ }^{(1)}$ to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.	0001
DEVICE_ID	Loads the JTAG ID register (JIDR) with the vendor ID code and places the register between TDI and TDO.	0010
HIGHZ	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.	0011
RESERVED	Several combinations are reserved. Do not use codes other than those identified for EXTEST, SAMPLE/PRELOAD, DEVICE_ID, HIGHZ, CLAMP, VALIDATE and BYPASS instructions.	0100
RESERVED		0101
RESERVED		0110
RESERVED		0111
CLAMP	Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO.	1000
RESERVED	Same as above.	1001
RESERVED		1010
RESERVED		1011
RESERVED		1100
VALIDATE	Automatically loaded into the instruction register whenever the TAP controller passes through the CAPTURE-IR state. The lower two bits '01' are mand ated by the IEEE std. 1149.1 specification.	1101
RESERVED	Same as above.	1110
BYPASS	The BYPASS instruction is used to truncate the boundary scan register as a single bit in length.	1111

NOTES:

1. Device outputs = All device outputs except TDO.
2. Device inputs = All device inputs except TDI, TMS, and TRST.

Timing Waveform of $\overline{\text { OE Operation }}{ }^{(1)}$

Ordering Information

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with
ZBT $^{\text {M }} 2.5 \mathrm{~V}$ I/O, Burst Counter, and Pipelined Outputs
Commercial and Industrial Temperature Ranges
Orderable Part Information

Speed (MHz)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
100	71T75602S100BG	BG119	PBGA	C
	71T75602S100BG8	BG119	PBGA	C
	71T75602S100BGG	BGG119	PBGA	C
	71T75602S100BGG8	BGG119	PBGA	C
	71T75602S100BGGI	BGG119	PBGA	1
	71T75602S100BGGI8	BGG119	PBGA	1
	71T75602S100BGI	BG119	PBGA	1
	71T75602S100BGI8	BG119	PBGA	1
133	71T75602S133BG	BG119	PBGA	C
	71T75602S133BG8	BG119	PBGA	C
	71T75602S133BGG	BGG119	PBGA	C
	71T75602S133BGG8	BGG119	PBGA	C
	71T75602S133BGGI	BGG119	PBGA	1
	71T75602S133BGGI8	BGG119	PBGA	1
	71T75602S133BGI	BG119	PBGA	1
	71T75602S133BGI8	BG119	PBGA	1
	71T75602S133PFG	PKG100	TQFP	C
	71T75602S133PFG8	PKG100	TQFP	C
	71T75602S133PFGI	PKG100	TQFP	1
	71T75602S133PFGI8	PKG100	TQFP	1

Speed (MHz)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
150	71T75602S150BG	BG119	PBGA	C
	71T75602S150BG8	BG119	PBGA	C
	71T75602S150BGG	BGG119	PBGA	C
	71T75602S150BGG8	BGG119	PBGA	C
	71T75602S150BGGI	BGG119	PBGA	1
	71T75602S150BGGI8	BGG119	PBGA	I
	71T75602S150BGI	BG119	PBGA	I
	71T75602S150BGI8	BG119	PBGA	I
	71T75602S150PFG	PKG100	TQFP	C
	71T75602S150PFG8	PKG100	TQFP	C
	71T75602S150PFGI	PKG100	TQFP	1
	71T75602S150PFGI8	PKG100	TQFP	1
166	71T75602S166BG	BG119	PBGA	C
	71T75602S166BG8	BG119	PBGA	C
	71T75602S166BGG	BGG119	PBGA	C
	71T75602S166BGG8	BGG119	PBGA	C
	71T75602S166BGGI	BGG119	PBGA	1
	71T75602S166BGGI8	BGG119	PBGA	1
	71T75602S166BGI	BG119	PBGA	1
	71T75602S166BGI8	BG119	PBGA	1
	71T75602S166PFG	PKG100	TQFP	C
	71T75602S166PFG8	PKG100	TQFP	C
	71T75602S166PFGI	PKG100	TQFP	1
	71T75602S166PFGI8	PKG100	TQFP	I

71T75602, 71T75802, 512K x 36, 1M x 18, 2.5V Synchronous SRAMs with $\mathrm{ZBT}^{\mathrm{TM}} 2.5 \mathrm{~V} 1 / \mathrm{O}$, Burst Counter, and Pipelined Outputs

Orderable Part Information (con't)

Speed (MHz)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
100	71T75802S100BG	BG119	PBGA	C
	71T75802S100BG8	BG119	PBGA	C
	71T75802S100BGGI	BGG119	PBGA	1
	71T75802S100BGG18	BGG119	PBGA	1
	71 T75802S100BGI	BG119	PBGA	1
	71T75802S100BGI8	BG119	PBGA	1
133	71T75802S133BG	BG119	PBGA	C
	71T75802S133BG8	BG119	PBGA	C
	71T75802S133BGG	BGG119	PBGA	C
	71T75802S133BGG8	BGG119	PBGA	C
	71T75802S133BGGI	BGG119	PBGA	1
	71T75802S133BGG18	BGG119	PBGA	1
	71T75802S133BGI	BG119	PBGA	1
	71T75802S133BGI8	BG119	PBGA	1
	71T75802S133PFG	PKG100	TQFP	C
	71T75802S133PFG8	PKG100	TQFP	C
	71775802S133PFGI	PKG100	TQFP	1
	71T75802S133PFGI8	PKG100	TQFP	1
150	71T75802S150BG	BG119	PBGA	C
	71T75802S150BG8	BG119	PBGA	C
	71T75802S150BGG	BGG119	PBGA	C
	71T75802S150BGG8	BGG119	PBGA	C
	71T75802S150BGGI	BGG119	PBGA	1
	71T75802S150BGG18	BGG119	PBGA	1
	71T75802S150BGI	BG119	PBGA	1
	71T75802S150BGI8	BG119	PBGA	1
	71T75802S150PFG	PKG100	TQFP	C
	71T75802S150PFG8	PKG100	TQFP	C

$\begin{aligned} & \text { Speed } \\ & (\mathrm{MHz}) \end{aligned}$	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
166	71T75802S166BG	BG119	PBGA	C
	71T75802S166BG8	BG119	PBGA	C
	71T75802S166BGG	BGG119	PBGA	C
	71T75802S166BGG8	BGG119	PBGA	C
	71T75802S166BGGI	BGG119	PBGA	1
	71T75802S166BGGI8	BGG119	PBGA	1
	71T75802S166BGI	BG119	PBGA	1
	71T75802S166BGI8	BG119	PBGA	1
	71T75802S166PFG	PKG100	TQFP	C
	71T75802S166PFG8	PKG100	TQFP	C
	71T75802S166PFGI	PKG100	TQFP	1
	71T75802S166PFGI8	PKG100	TQFP	1
200	71T75802S200BG	BG119	PBGA	C
	71T75802S200BG8	BG119	PBGA	C
	71T75802S200BGG	BGG119	PBGA	C
	71T75802S200BGG8	BGG119	PBGA	C
	71T75802S200BGI	BG119	PBGA	1
	71T75802S200BGI8	BG119	PBGA	1
	71T75802S200PFG	PKG100	TQFP	C
	71T75802S200PFG8	PKG100	TQFP	C
	71T75802S200PFGI	PKG100	TQFP	1
	71T75802S200PFGI8	PKG100	TQFP	1

Datasheet Document History

Date	Pages	Description
04/20/00		Created New Datasheet
05/25/00	Pg.1,14,15,25	Added 166MHz speed grade offering
	Pg. 1,2,14	Corrected error in ZZ Sleep Mode
	Pg. 23	AddBQ165 Package Diagram Outline
	Pg. 24	Corrected 119BGA Package Diagram Outline.
	Pg. 25	Corrected topmark on ordering information
08/23/01	Pg. 1,2,24	Removed reference of BQ165 Package
	Pg. 7	Removed page of the 165 BGA pin configuration
	Pg. 23	Removed page of the 165 BGA package diagram outline
10/16/01	Pg. 6	Corrected 3.3V to 2.5V in Note 2
10/29/01	Pg. 13	Improved DC Electrical characteristics-parameters improved: Icc, ISB2, ISB3, IZZ.
12/21/01	Pg. 4-6	Added clarification to JTAG pins, allow for NC. Added 36M address pin locations.
	Pg. 14	Revised 166MHz tcDC(min), tCLz(min) and tchz(min) to 1.0ns
06/07/02	Pg. 1-3,6,13,20,21	Added complete JTAG functionality.
	Pg. 2,13	Added notes for ZZ pin internal pulldown and ZZ leakage current.
	Pg. 13,14,24	Added 200MHz and 225MHz to DC and AC Electrical Characteristics. Updated supply current for Idd, ISB1, ISB3 and Izz.
11/19/02	Pg.1-24	Changed datasheetfrom Advanced Information to final release.
	Pg. 13	Updated DC Electrical characteristics temperature and voltage range table.
05/23/03	Pg.4,5,13,14,24	Addedl-temp to the datasheet.
	Pg. 5	Updated 165 BGA Capacitance table.
04/01/04	Pg. 1	Updated logo with new design.
	Pg. 4,5	Clarified ambient and case operating temperatures.
	Pg. 6	Updated pin I/O number order for the 119 BGA.
	Pg. 23	Updated 119BGA Package Diagram Drawing.
10/01/08	Pg. 1,13,14,24	Deleted 225 MHz part, added 200 MHz Industrial grade and added green packages. Updated the ordering information by removing the "IDT" notation.
04/04/12	Pg. 2,22	Updated text on Page 2 last paragraph. Added Note to ordering information and updated to include tube or tray and tape \& reel.
10/04/17	Pg. 1 \& 26	Updated IDT logo from Trademark to Registered
	Pg. 1-4	InFeatures: Added text: "Green parts available, see Ordering Information" Moved the 512 Kx 36 FBD from page 3 to page 1, moved the 1 Mx 18 FBD from page 3 to page 2 , moved the Pin Description Summary from page 1 to page 3 and moved the Pin Definitions from page 2 to page 4 in accordance with our standard datasheet format
	Pg. 5 \& 6	Updated the TQFP pin configurations for the 512 kx 36 and 1Mx18 by rotating package pin labels and pin numbers 90 degrees counter clockwise, added IDT logo \& in accordance with the packaging code, changed the PK100 designation to PKG100, changed the text to be in alignment with new diagram marking specs
	Pg. 6	Removed fBGA capacitance table as this package is no longer offered for this device
	Pg. 12	Removed "? = don't know" from Burst Write Operation footnote 1 as it does not apply to this table
	Pg. 15	Updated DC Chars table added footnote 4 \& reference 4 for the $512 \mathrm{~K} \times 36,119$ BGA 200Mhz speed offered only for the 71T75802 device
	Pg. 16	Updated AC Chars table added footnote 6 \& reference 6 for the 1 M $\times 18,119$ BGA 200Mhz speed offered only for the 71 T75802 device
	Pg. 24	Ordering Information updated to Tray and Green indicator
		Updated package codes TQFP to PKG100 and BGA to BGG119
	Pg. 24-25	Added OrderablePartInformation fromidt.com
09/27/21	Pg. 1-27	Rebranded as Renesas datasheet
	Pg. 1 \& 24	Updated Industrial temp range and green availability
	Pg. 5-7 \& 24	Updated package codes
	Pg. 24-25	Updated Orderable Part Information tables by correcting " ns " to "MHz"

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

[^0]: ZBT $^{\circledR}$ and Zero Bus Turnaround are trademarks of Renesas Electronics Corporation and the architecture is supported by Micron Technology and Motorola Inc

