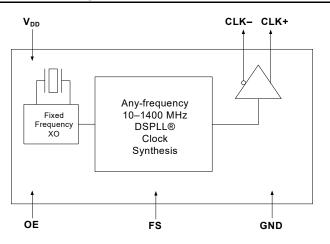


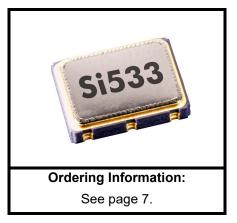
DUAL-FREQUENCY CRYSTAL OSCILLATOR (XO) (10 MHz to 1.4 GHz)

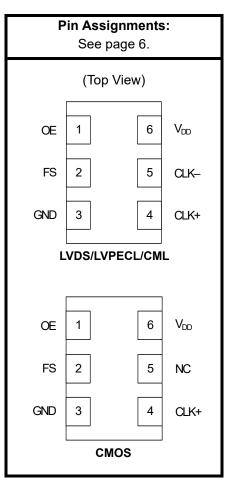
Features

- Available with any-frequency output
 frequencies from 10 MHz to 945 MHz
 and select frequencies to 1.4 GHz
- 2 selectable output frequencies
- 3rd generation DSPLL[®] with superior jitter performance
- 3x better frequency stability than SAW-based oscillators
- Pin 1 output enable (OE)

Applications


- SONET/SDH
- Networking
- SD/HD video


Description


- Internal fixed crystal frequency ensures high reliability and low aging
- Available CMOS, LVPECL, LVDS, and CML outputs
- 3.3, 2.5, and 1.8 V supply options
- Industry-standard 5 x 7 mm
- package and pinout
- Pb-free/RoHS-compliant
- Clock and data recovery
- FPGA/ASIC clock generation

The Si533 dual frequency XO utilizes Skyworks Solutions' advanced DSPLL[®] circuitry to provide a low jitter clock at high frequencies. The Si533 is available with any-frequency output frequency from 10 to 945 MHz and select frequencies to 1400 MHz. Unlike a traditional XO, where a different crystal is required for each output frequency, the Si533 uses one fixed crystal to provide a wide range of output frequencies. This IC based approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides superior supply noise rejection, simplifying the task of generating low jitter clocks in noisy environments typically found in communication systems. The Si533 IC based XO is factory configurable for a wide variety of user specifications including frequency, supply voltage, output format, and temperature stability. Specific configurations are factory programmed at time of shipment, thereby eliminating long lead times associated with custom oscillators.

Functional Block Diagram

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev. 1.4 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 27, 2021

1. Electrical Specifications

Table 1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Supply Voltage ¹	V _{DD}	3.3 V option	2.97	3.3	3.63	V
		2.5 V option	2.25	2.5	2.75	V
		1.8 V option	1.71	1.8	1.89	V
Supply Current	I _{DD}	Output enabled LVPECL CML LVDS CMOS	 	111 99 90 81	121 108 98 88	mA
		Tristate mode	—	60	75	mA
Output Enable (OE)		V _{IH}	$0.75 \mathrm{~x~V_{DD}}$	—	—	V
and Frequency Select (FS) ²		V _{IL}	—		0.5	V
Operating Temperature Range	T _A		-40		85	°C
Notes:	•		•		•	•

1. Selectable parameter specified by part number. See Section 3. "Ordering Information" on page 7 for further details.

2. OE and FS pins include a 17 k Ω pullup resistor to V_{DD}.

Table 2. CLK± Output Frequency Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Nominal Frequency ^{1,2}	f _O	LVPECL/LVDS/CML	10	_	945	MHz
		CMOS	10		160	MHz
Initial Accuracy	f _i	Measured at +25 °C at time of shipping	_	±1.5	_	ppm
Temperature Stability ^{1,3}			7 20 50		+7 +20 +50	ppm
Aging	£	Frequency drift over first year	_	_	±3	ppm
Aging	f _a	Frequency drift over 20 year life		_	±10	ppm

Notes:

1. See Section 3. "Ordering Information" on page 7 for further details.

- 2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz.
- 3. Selectable parameter specified by part number.
- 4. Time from powerup or tristate mode to f_O.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
		Temp stability = ±7 ppm	—	—	±20	ppm
Total Stability		Temp stability = ±20 ppm	—	_	±31.5	ppm
		Temp stability = ±50 ppm			±61.5	ppm
Powerup Time ⁴	t _{osc}				10	ms
Settling Time After FS Change	t _{FRQ}		—	_	10	ms

Notes:

1. See Section 3. "Ordering Information" on page 7 for further details.

2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz.

3. Selectable parameter specified by part number.

4. Time from powerup or tristate mode to f_O .

Table 3. CLK± Output Levels and Symmetry

Symbol	Test Condition	Min	Тур	Max	Units
Vo	mid-level	V _{DD} – 1.42	_	V _{DD} – 1.25	V
V _{OD}	swing (diff)	1.1	_	1.9	V_{PP}
V _{SE}	swing (single-ended)	0.55	_	0.95	V_{PP}
Vo	mid-level	1.125	1.20	1.275	V
V _{OD}	swing (diff)	0.5	0.7	0.9	V_{PP}
	2.5/3.3 V option mid-level		V _{DD} – 1.30		V
Vo	1.8 V option mid-level		V _{DD} – 0.36		V
.,	2.5/3.3 V option swing (diff)	1.10	1.50	1.90	V _{PP}
V _{OD}	1.8 V option swing (diff)	0.35	0.425	0.50	V _{PP}
V _{OH}	I _{OH} = 32 mA	0.8 x V _{DD}		V _{DD}	V
V _{OL}	I _{OL} = 32 mA		_	0.4	V
t _{R,} t _F	LVPECL/LVDS/CML		_	350	ps
	CMOS with C _L = 15 pF		1		ns
SYM	$\begin{array}{llllllllllllllllllllllllllllllllllll$	45		55	%
	V _{OD} V _{SE} V _O V _{OD} V _{OD} V _{OD} V _{OH} V _{OL}	$\begin{tabular}{ c c c c } \hline V_{OD} & swing (diff) \\ \hline V_{SE} & swing (single-ended) \\ \hline V_{O} & mid-level \\ \hline V_{OD} & swing (diff) \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ mid-level \\ \hline 1.8 \ V \ option \ mid-level \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ mid-level \\ \hline 1.8 \ V \ option \ swing (diff) \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) \\ \hline 1.8 \ V \ option \ swing (diff) \\ \hline 1.8 \ V \ option \ swing (diff) \\ \hline 1.8 \ V \ option \ swing (diff) \\ \hline 1.8 \ V \ option \ swing (diff) \\ \hline V_{OL} & I_{OH} = 32 \ mA \\ \hline V_{OL} & I_{OL} = 32 \ mA \\ \hline t_{R,} t_{F} & LVPECL/LVDS/CML \\ \hline CMOS \ with \ C_{L} = 15 \ pF \\ \hline SYM & LVPECL: \ \ V_{DD} - 1.3 \ V \ (diff) \\ LVDS: \ \ 1.25 \ V \ (diff) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline V_{OD} & swing (diff) & 1.1 \\ \hline V_{SE} & swing (single-ended) & 0.55 \\ \hline V_{O} & mid-level & 1.125 \\ \hline V_{OD} & swing (diff) & 0.5 \\ \hline V_{OD} & swing (diff) & 0.5 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ mid-level & \\ \hline 1.8 \ V \ option \ mid-level & \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 1.10 \\ \hline 1.8 \ V \ option \ swing (diff) & 1.10 \\ \hline 1.8 \ V \ option \ swing (diff) & 0.35 \\ \hline V_{OL} & I_{OH} = 32 \ mA & 0.8 \ x \ V_{DD} \\ \hline V_{OL} & I_{OL} = 32 \ mA & \\ \hline t_{R,} t_{F} & LVPECL/LVDS/CML & \\ \hline CMOS \ with \ C_{L} = 15 \ pF & \\ \hline SYM & LVPECL: \ V_{DD} - 1.3 \ V \ (diff) \\ LVDS: & 1.25 \ V \ (diff) & 45 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline V_{OD} & swing (diff) & 1.1 & \\ \hline V_{SE} & swing (single-ended) & 0.55 & \\ \hline V_{O} & mid-level & 1.125 & 1.20 \\ \hline V_{OD} & swing (diff) & 0.5 & 0.7 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ mid-level & & V_{DD} - 1.30 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ mid-level & & V_{DD} - 0.36 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 1.10 & 1.50 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 0.35 & 0.425 \\ \hline V_{OD} & 1.8 \ V \ option \ swing (diff) & 0.35 & 0.425 \\ \hline V_{OH} & I_{OH} = 32 \ mA & 0.8 \ x \ V_{DD} & \\ \hline V_{OL} & I_{OL} = 32 \ mA & & \\ \hline t_{R}, t_{F} & LVPECL/LVDS/CML & & \\ \hline CMOS \ with \ C_{L} = 15 \ pF & & 1 \\ \hline SYM & LVPECL: \ \ V_{DD} - 1.3 \ V \ (diff) & 45 & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c } \hline V_{OD} & swing (diff) & 1.1 & & 1.9 \\ \hline V_{SE} & swing (single-ended) & 0.55 & & 0.95 \\ \hline V_{O} & mid-level & 1.125 & 1.20 & 1.275 \\ \hline V_{OD} & swing (diff) & 0.5 & 0.7 & 0.9 \\ \hline V_{OD} & swing (diff) & 0.5 & 0.7 & 0.9 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ mid-level & & V_{DD} - 1.30 & \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 1.10 & 1.50 & 1.90 \\ \hline V_{OD} & 2.5/3.3 \ V \ option \ swing (diff) & 0.35 & 0.425 & 0.50 \\ \hline V_{OD} & 1.8 \ V \ option \ swing (diff) & 0.35 & 0.425 & 0.50 \\ \hline V_{OH} & I_{OH} = 32 \ mA & 0.8 \ x \ V_{DD} & & V_{DD} \\ \hline V_{OL} & I_{OL} = 32 \ mA & & -0.4 \\ \hline t_{R}, t_{F} & LVPECL/LVDS/CML & & & 350 \\ \hline CMOS \ with \ C_{L} = 15 \ pF & & 1 & \\ \hline SYM & LVPECL: \ V_{DD} - 1.3 \ V (diff) \\ LVDS: & 1.25 \ V (diff) & 45 & & 55 \\ \hline \end{tabular}$

1. 50 Ω to V_{DD} – 2.0 V.

2. $R_{term} = 100 \Omega$ (differential).

3. $C_L = 15 \, pF$

Table 4. CLK± Output Phase Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Phase Jitter (RMS) ¹	фJ	12 kHz to 20 MHz (OC-48)	_	0.25	0.40	ps
for F _{OUT} ≥ 500 MHz		50 kHz to 80 MHz (OC-192)	_	0.26	0.37	ps
Phase Jitter (RMS) ¹	φJ	12 kHz to 20 MHz (OC-48)	_	0.36	0.50	ps
for F _{OUT} of 125 to 500 MHz		50 kHz to 80 MHz (OC-192) ²	_	0.34	0.42	ps
Phase Jitter (RMS)	φJ	12 kHz to 20 MHz (OC-48) ²	_	0.62	—	ps
for F _{OUT} of 10 to 160 MHz CMOS Output Only		50 kHz to 20 MHz ²	_	0.61	—	ps
Notos:	•		•	•	•	

Notes:

1. Refer to AN256 for further information.

2. Max offset frequencies: 80 MHz for FOUT ≥ 250 MHz, 20 MHz for 50 MHz ≤ FOUT <250 MHz,

2 MHz for 10 MHz <u><</u> FOUT <50 MHz.

Table 5. CLK± Output Period Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	
Period Jitter*	J _{PER}	RMS	-	2	-	ps	
		Peak-to-Peak	_	14	_	ps	
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information.							

Table 6. CLK± Output Phase Noise (Typical)

Offset Frequency (f)	120.00 MHz LVDS	156.25 MHz LVPECL	622.08 MHz LVPECL	Units
100 Hz	-112	-105	-97	
1 kHz	-122	-122	-107	
10 kHz	-132	-128	-116	
100 kHz	-137	-135	-121	dBc/Hz
1 MHz	-144	-144	-134	
10 MHz	-150	-147	-146	
100 MHz	n/a	n/a	-148	

Table 7. Environmental Compliance

The Si533 meets the following qualification test requirements.

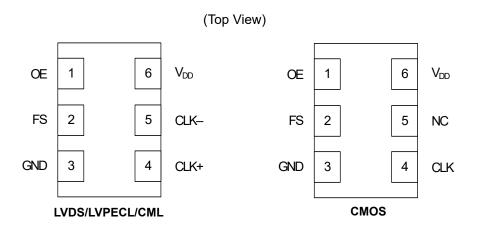
Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883, Method 2002
Mechanical Vibration	MIL-STD-883, Method 2007
Solderability	MIL-STD-883, Method 2003
Gross & Fine Leak	MIL-STD-883, Method 1014
Resistance to Solder Heat	MIL-STD-883, Method 2036
Moisture Sensitivity Level	J-STD_020, MSL1
Contact Pads	Gold over Nickel

Table 8. Thermal Characteristics

(Typical values TA = 25 °C, V_{DD} = 3.3 V)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance Junction to Ambient	θ_{JA}	Still Air	—	84.6	_	°C/W
Thermal Resistance Junction to Case	θ_{JC}	Still Air	—	38.8	_	°C/W
Ambient Temperature	T _A		-40	_	85	°C
Junction Temperature	Т _Ј		_		125	°C

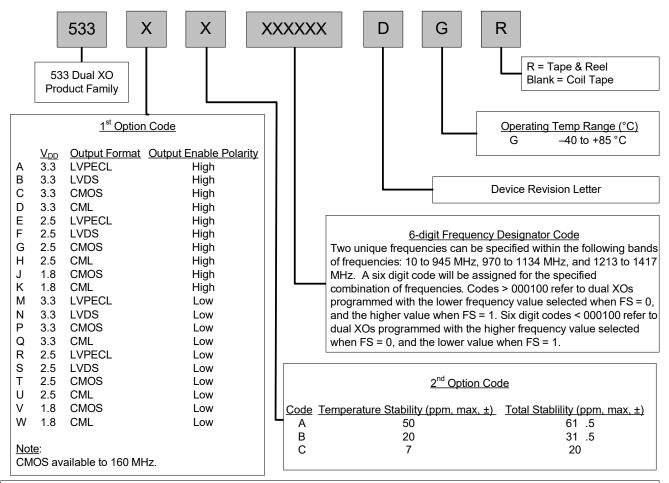
Table 9. Absolute Maximum Ratings¹


Parameter	Symbol	Rating	Units
Maximum Operating Temperature	T _{AMAX}	85	°C
Supply Voltage, 1.8 V Option	V _{DD}	-0.5 to +1.9	V
Supply Voltage, 2.5/3.3 V Option	V _{DD}	-0.5 to +3.8	V
Input Voltage (any input pin)	VI	–0.5 to V _{DD} + 0.3	V
Storage Temperature	Τ _S	–55 to +125	°C
ESD Sensitivity (HBM, per JESD22-A114)	ESD	2500	V
Soldering Temperature (Pb-free profile) ²	T _{PEAK}	260	°C
Soldering Temperature Time @ T _{PEAK} (Pb-free profile) ²	t _P	20–40	seconds

Notes:

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.

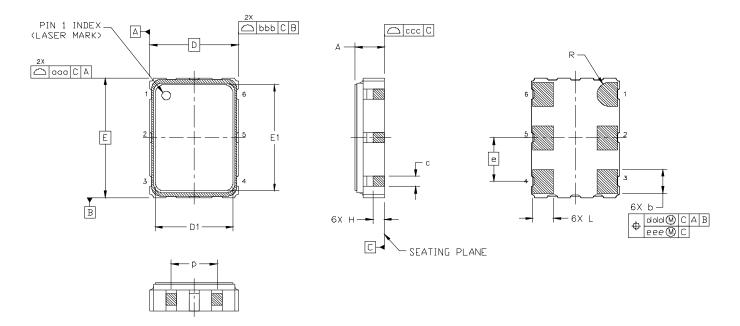
2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download at https://www.skyworksinc.com/Product_Certificate.aspx for further information, including soldering profiles.


2. Pin Descriptions

Pin #	Symbol	LVDS/LVPECL/CML Function	CMOS Function					
1	OE*	Output Enable* 0 = clock output disabled (outputs tristated) 1 = clock output enabled	Output Enable* 0 = clock output disabled (outputs tristated) 1 = clock output enabled					
2	FS*	Frequency Select* 0 = First frequency selected 1 = Second frequency selected	Frequency Select* 0 = First frequency selected 1 = Second frequency selected					
3	GND	Electrical and Case Ground	Electrical and Case Ground					
4	CLK+	Oscillator Output	Oscillator Output					
5	CLK–	Complementary Output	No Connection					
6	V _{DD}	Power Supply Voltage	Power Supply Voltage					
	Note: FS and OE include a 17 kΩ pullup resistor to V _{DD} . See Section 3. "Ordering Information" on page 7 for details on frequency value ordering.							

3. Ordering Information

The Si533 XO supports a variety of options including frequency, temperature stability, output format, and V_{DD} . Specific device configurations are programmed into the Si533 at time of shipment. Configurations can be specified using the Part Number Configuration chart below. Skyworks Solutions provides a web browser-based part number configuration utility to simplify this process. Refer to https://www.skyworksinc.com/en/Products/Timing to access this tool and for further ordering instructions. The Si533 is supplied in an industry-standard, RoHS compliant, 6-pad, 5 x 7 mm package. The Si533 supports output enable (OE) on pin 1.



Example Part Number: 533AB000108DGR is a 5x7mm Dual XO in a 6 pad package. Since the six digit code (000108) is > 000100, f0 is 644.53125 MHz (lower frequency) and f1 is 693.48299 (higher frequency), with a 3.3V supply and LVPECL output. Temperature stability is specified as \pm 20 ppm. The part is specified for a -40 to +85 C° ambient temperature range operation and is shipped in tape and reel format.

Figure 1. Part Number Convention

4. Outline Diagram and Suggested Pad Layout

Figure 2 illustrates the package details for the Si533. Table 10 lists the values for the dimensions shown in the illustration.

Table 10. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Мах
A	1.50	1.65	1.80
b	1.30	1.40	1.50
С	0.50	0.60	0.70
D	5.00 BSC		
D1	4.30	4.40	4.50
е	2.54 BSC		
E	7.00 BSC		
E1	6.10	6.20	6.30
Н	0.55	0.65	0.75
L	1.17	1.27	1.37
р	1.80	—	2.60
R	0.70 REF		
aaa	0.15		
bbb	0.15		
CCC	0.10		
ddd	0.10		
eee	0.05		

```
8 Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com
Rev. 1.4 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • September 27, 2021
```

5. Si533 Mark Specification

Figure 3 illustrates the mark specification for the Si533. Table 11 lists the line information.

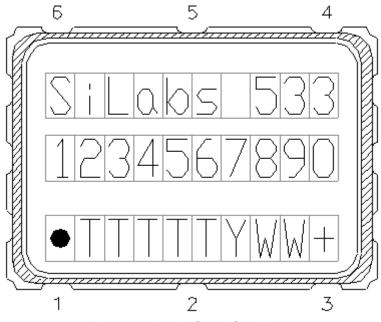


Figure 3. Mark Specification

Table 11. Si53x Top Mark Description

Line	Position	Description	
1	1–10	"SiLabs 533"	
2	1–10	Si533: Option1 + Option2 + ConfigNum(6) + Temp	
3	Trace Code		
	Position 1	Pin 1 orientation mark (dot)	
	Position 2	Product Revision (D)	
	Position 3–6	Tiny Trace Code (4 alphanumeric characters per assembly release instructions)	
	Position 7	Year (least significant year digit), to be assigned by assembly site (ex: 2007 = 7)	
	Position 8–9	Calendar Work Week number (1–53), to be assigned by assembly site	
	Position 10	"+" to indicate Pb-Free and RoHS-compliant	

6. 6-Pin PCB Land Pattern

Figure 4 illustrates the 6-pin PCB land pattern for the Si533. Table 12 lists the values for the dimensions shown in the illustration.

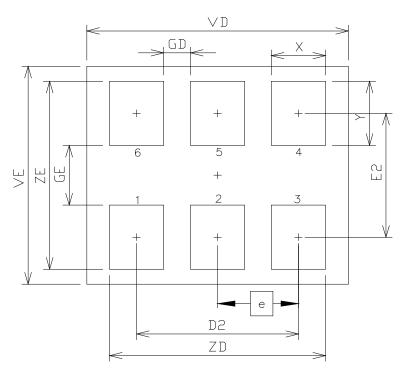


Figure 4. Si533 PCB Land Pattern

Table 12. PCB Land Pattern	Dimensions (mm)
----------------------------	-----------------

Dimension	Min	Max	
D2	5.08 REF		
е	2.54 BSC		
E2	4.15 REF		
GD	0.84	—	
GE	2.00	—	
VD	8.20 REF		
VE	7.30 REF		
Х	1.70 TYP		
Y	2.15 REF		
ZD	— 6.78		
ZE	—	6.30	
Notes:		I.	

Notes:

1. Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification.

2. Land pattern design based on IPC-7351 guidelines.

3. All dimensions shown are at maximum material condition (MMC).

4. Controlling dimension is in millimeters (mm).

DOCUMENT CHANGE LIST

Revision 1.0 to Revision 1.1

- Updated Table 1, "Recommended Operating Conditions," on page 2.
 - Device maintains stable operation over -40 to +85 °C operating temperature range.
 - Supply current specifications updated for revision D.
- Updated Table 2, "CLK± Output Frequency Characteristics," on page 2.
 - Added specification for ±20 ppm lifetime stability (±7 ppm temperature stability) XO.
- Updated Table 3, "CLK± Output Levels and Symmetry," on page 3.
 - Updated LVDS differential peak-peak swing specifications.
- Updated Table 4, "CLK± Output Phase Jitter," on page 4.
- Updated Table 5, "CLK± Output Period Jitter," on page 4.
 - Revised period jitter specifications.
- Updated Table 9, "Absolute Maximum Ratings¹," on page 5 to reflect the soldering temperature time at 260 °C is 20–40 sec per JEDEC J-STD-020C.
- Updated 3. "Ordering Information" on page 7.
 Changed ordering instructions to revision D.
- Added 5. "Si533 Mark Specification" on page 9.

Revision 1.1 to Revision 1.2

- Updated 2.5 V/3.3 V and 1.8 V CML output level specifications for Table 3 on page 3.
- Added footnotes clarifying max offset frequency test conditions for Table 4 on page 4.
- Removed the words "Differential Modes: LVPECL/LVDS/CML" in the footnote referring to AN256 in Table 4 on page 4.
- Added CMOS phase jitter specs to Table 4 on page 4.
- Updated Table 7 on page 5 to include the "Moisture Sensitivity Level" and "Contact Pads" rows.
- Revised Figure 2 on page 8 to reflect current package outline diagram.
- Updated Figure 3 and Table 11 on page 9 to reflect specific marking information. Previously, Figure 3 was generic.
- Updated contact information on page 12.

Revision 1.2 to Revision 1.3

 Added Table 8, "Thermal Characteristics," on page 5.

Revision 1.3 to Revision 1.4

June, 2018

 Changed "Trays" to "Coil Tape" in section 3. "Ordering Information".

SKYWORKS

ClockBuilder Pro

Customize Skyworks clock generators, jitter attenuators and network synchronizers with a single tool. With CBPro you can control evaluation boards, access documentation, request a custom part number, export for in-system programming and more!

www.skyworksinc.com/CBPro

C

Portfolio www.skyworksinc.com/ia/timing

www.skyworksinc.com/CBPro

Quality www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5[®], SkyOne[®], SkyBlue[™], Skyworks Green[™], Clockbuilder[®], DSPLL[®], ISOmodem[®], ProSLIC[®], and SiPHY[®] are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

