

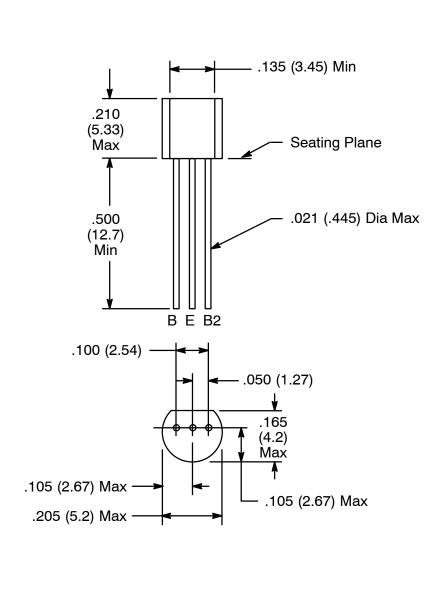
2N4870 Unijunction Transistor (UJT) TO-92 Type Package

Description:

The 2N4870 is a PN unijunction transistor in a TO-92 type package designed for use in pulse and timing circuits, sensing circuits and thyristor trigger circuits.

Absolute Maximum Ratings: (T_A = +25°C unless other specified)

	,
RMS Power Dissipation, P _D	
Derate Above 25°C	3.0mW/°C
RMS Emitter Current, I _E	50mA
Peak-Pulse Emitter Current (Note 1), IE	1.5A
Emitter Reverse Voltage, V _{B2E}	30V
Interbase Voltage (Note 2), V _{B2B1}	35V
Operating Junction Temperature Range, T _J	65° to +125°C
Storage Temperature Range, T _{stg}	65° to +150°C
N 1 4 D 1 4 40/ DDD 40 DD0	


Note 1. Duty cycle ≤ 1%, PRR = 10 PPS

Note 2. Based upon power dissipation at $T_A = +25^{\circ}C$

<u>Electrical Characteristics</u>: (T_A = +25°C unless other specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Intrinsic Standoff Ratio	η	V _{B2B1} = 10V, Note 3	0.56	-	0.76	
Interbase Resistance	R _{BB}		4.0	6.0	9.1	kΩ
Interbase Resistance Temperature Coefficient	αR _{BB}	$V_{B2B1} = 3V, I_E = 0,$ $T_A = -65^{\circ}$ to +125°C	0.1	-	0.9	%/°C
Emitter Saturation Voltage	V _{BE1(sat)}	$V_{B2B1} = 10V, I_E = 50mA, Note 4$	_	2.5	-	V
Modulated Interbase Current	I _{B2(Mod)}	V _{B2B1} = 10V, I _E = 50mA	_	15	-	mA
Emitter Reverse Current	I _{EB2O}	$V_{B2E} = 30V, I_{B1} = 0$	_	0.005	1.0	μΑ
Peak-Point Emitter Current	l _P	V _{B2B1} = 25V	_	1.0	5.0	μΑ
Valley-Point Current	I _V	$V_{B2B1} = 20V, R_{B2} = 100\Omega, Note 4$	2.0	5.0	_	mA
Base-One Peak Pulse Voltage	V _{OB1}		3.0	6.0	_	V

- Note 3. Intrinsic standoff ratio, is defined in terms of peak–point voltage, V_P , by means of the equation: $V_P = \eta \ V_{B2B1} + V_F$, where V_F is approximately 0.49 volts at +25°C @ $I_F = 10\mu A$ and decreases with temperature at approximately 2.5mV/°C. Components R_1 , C_1 , and the UJT form a relaxation oscillator, the remaining circuitry serves as a peak–voltage detector. The forward drop of Diode D_1 compensates for V_F . To use, the "call" button is pushed, and R_3 is adjusted to make the current meter, M_1 , read full scale. When the "call" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.0.
- Note 4. Use pulse techniques: PW $\sim 300\mu s$, duty cycle $\leq 2.0\%$ to avoid internal heating, which may result in erroneous readings.

