2N4870 Unijunction Transistor (UJT) TO-92 Type Package ## **Description:** The 2N4870 is a PN unijunction transistor in a TO-92 type package designed for use in pulse and timing circuits, sensing circuits and thyristor trigger circuits. Absolute Maximum Ratings: (T_A = +25°C unless other specified) | | , | |--|---------------| | RMS Power Dissipation, P _D | | | Derate Above 25°C | 3.0mW/°C | | RMS Emitter Current, I _E | 50mA | | Peak-Pulse Emitter Current (Note 1), IE | 1.5A | | Emitter Reverse Voltage, V _{B2E} | 30V | | Interbase Voltage (Note 2), V _{B2B1} | 35V | | Operating Junction Temperature Range, T _J | 65° to +125°C | | Storage Temperature Range, T _{stg} | 65° to +150°C | | N 1 4 D 1 4 40/ DDD 40 DD0 | | Note 1. Duty cycle ≤ 1%, PRR = 10 PPS Note 2. Based upon power dissipation at $T_A = +25^{\circ}C$ **<u>Electrical Characteristics</u>**: (T_A = +25°C unless other specified) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|-----------------------|--|------|-------|------|------| | Intrinsic Standoff Ratio | η | V _{B2B1} = 10V, Note 3 | 0.56 | - | 0.76 | | | Interbase Resistance | R _{BB} | | 4.0 | 6.0 | 9.1 | kΩ | | Interbase Resistance Temperature Coefficient | αR _{BB} | $V_{B2B1} = 3V, I_E = 0,$
$T_A = -65^{\circ}$ to +125°C | 0.1 | - | 0.9 | %/°C | | Emitter Saturation Voltage | V _{BE1(sat)} | $V_{B2B1} = 10V, I_E = 50mA, Note 4$ | _ | 2.5 | - | V | | Modulated Interbase Current | I _{B2(Mod)} | V _{B2B1} = 10V, I _E = 50mA | _ | 15 | - | mA | | Emitter Reverse Current | I _{EB2O} | $V_{B2E} = 30V, I_{B1} = 0$ | _ | 0.005 | 1.0 | μΑ | | Peak-Point Emitter Current | l _P | V _{B2B1} = 25V | _ | 1.0 | 5.0 | μΑ | | Valley-Point Current | I _V | $V_{B2B1} = 20V, R_{B2} = 100\Omega, Note 4$ | 2.0 | 5.0 | _ | mA | | Base-One Peak Pulse Voltage | V _{OB1} | | 3.0 | 6.0 | _ | V | - Note 3. Intrinsic standoff ratio, is defined in terms of peak–point voltage, V_P , by means of the equation: $V_P = \eta \ V_{B2B1} + V_F$, where V_F is approximately 0.49 volts at +25°C @ $I_F = 10\mu A$ and decreases with temperature at approximately 2.5mV/°C. Components R_1 , C_1 , and the UJT form a relaxation oscillator, the remaining circuitry serves as a peak–voltage detector. The forward drop of Diode D_1 compensates for V_F . To use, the "call" button is pushed, and R_3 is adjusted to make the current meter, M_1 , read full scale. When the "call" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.0. - Note 4. Use pulse techniques: PW $\sim 300\mu s$, duty cycle $\leq 2.0\%$ to avoid internal heating, which may result in erroneous readings.