N-Channel Power MOSFET 60 V, 220 A, 3.0 mΩ

Features

- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant
- NVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

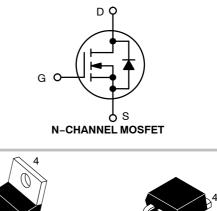
MAXIMUM RATINGS (1 J = 25°C Unless otherwise specified)							
Para	Symbol	Value	Unit				
Drain-to-Source Volta	Drain-to-Source Voltage				V		
Gate-to-Source Voltag	ge – Conti	nuous	V _{GS}	±20	V		
Continuous Drain	Steady	T _A = 25°C	I _D	220	А		
Current, $R_{\theta JC}$	State	T _A = 100°C		156			
Power Dissipation, $R_{\theta JC}$	Steady State	$T_A = 25^{\circ}C$	PD	283	W		
Pulsed Drain Current	tp	= 10 μs	I _{DM}	660	А		
Current Limited by Pac	ckage		I _{DMmax}	130	А		
Operating and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C		
Source Current (Body	Diode)		۱ _S	130	А		
Single Pulse Drain-to-Source Avalanche Energy (L = 0.3 mH)			E _{AS}	735	mJ		
Lead Temperature for Soldering Purposes (1/8" from Case for 10 Seconds)			ΤL	260	°C		

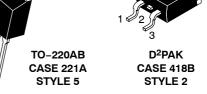
MAXIMUM RATINGS (T_J = 25° C Unless otherwise specified)

THERMAL RESISTANCE RATINGS

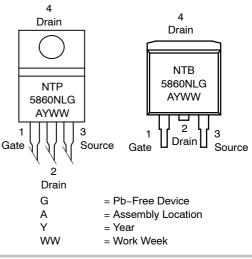
Parameter	Symbol	Мах	Unit
Junction-to-Case (Drain) Steady State	$R_{\theta JC}$	0.53	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	28	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).



ON Semiconductor®

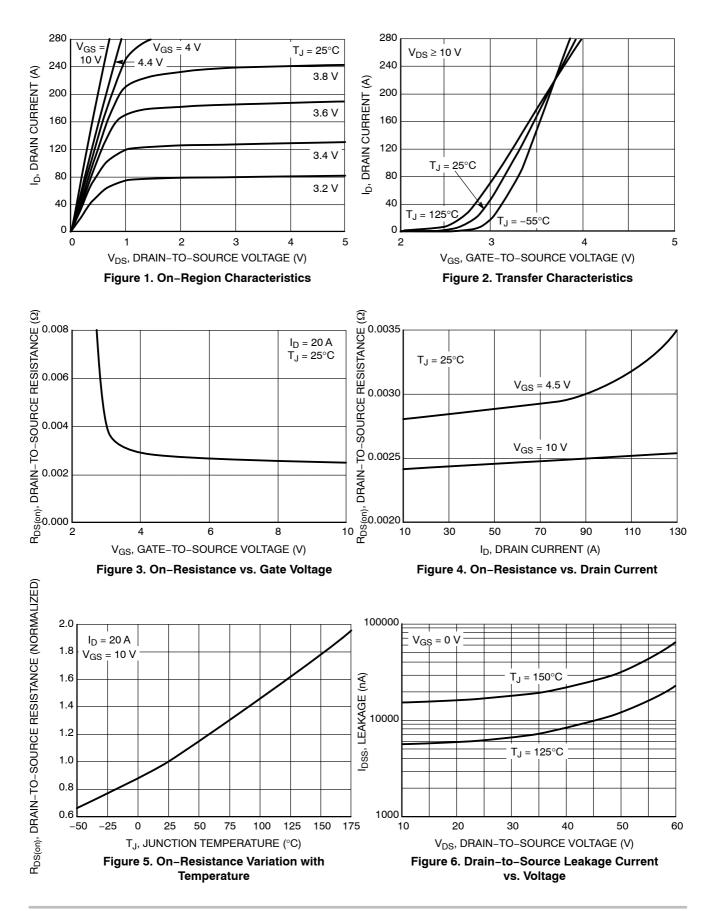

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	$3.0~\mathrm{m\Omega}$ @ 10 V	220 A
	3.6 mΩ @ 4.5 V	220 A

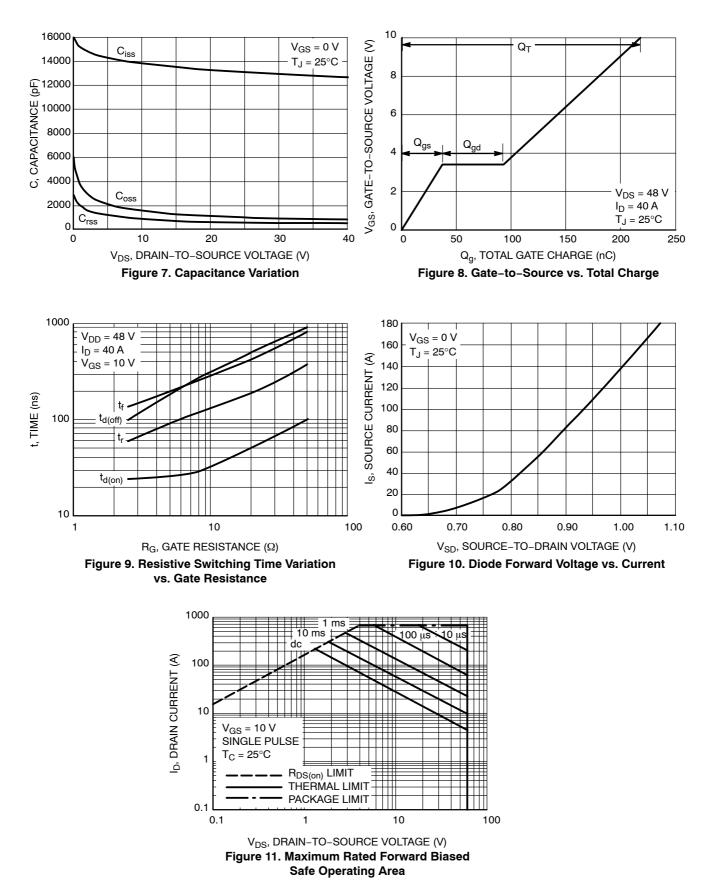
MARKING DIAGRAMS & PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.


© Semiconductor Components Industries, LLC, 2012 Augsut, 2012 – Rev. 1

1


ELECTRICAL CHARACTERISTICS (T_J = 25° C Unless otherwise specified)

Characteristics	Symbol	Test Co	ondition	Min	Тур	Мах	Unit
OFF CHARACTERISTICS	•			•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{DS} = 0 V,	I _D = 250 μA	60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 2	50 μΑ		6.1		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V V _{DS} = 60 V	$T_{\rm J} = 25^{\circ}{\rm C}$			1.0	μΑ
		V _{GS} = 0 V V _{DS} = 60 V	T _J = 125°C			100	-
Gate-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, \	′ _{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)	•			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS},$	I _D = 250 μA	1.0		3.0	V
Threshold Temperature Coefficient	V _{GS(th)} /T _J				-7.7		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A V _{GS} = 4.5 V, I _D = 20 A			2.4	3.0	mΩ
					2.8	3.6	
Forward Transconductance	9 FS	V _{DS} = 15 V, I _D = 30 A			47		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE						
Input Capacitance	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			13216		pF
Output Capacitance	C _{oss}				1127		
Transfer Capacitance	C _{rss}				752		
Total Gate Charge	Q _{G(TOT)}				220		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V.	V _{DS} = 48 V,		13		
Gate-to-Source Charge	Q _{GS}	I _D =	40 Å		37		
Gate-to-Drain Charge	Q _{GD}				54		
SWITCHING CHARACTERISTICS, $V_{GS} =$	10 V (Note 3)						
Turn-On Delay Time	t _{d(on)}				25		ns
Rise Time	t _r	V _{GS} = 10 V.	V _{DD} = 48 V,		58		-
Turn-Off Delay Time	t _{d(off)}	I _D = 100 A,	$R_{G} = 2.5 \Omega^{2}$		98		
Fall Time	t _f				144		
DRAIN-SOURCE DIODE CHARACTERIS	TICS				•		-
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V	T _J = 25°C		0.76	1.1	V _{dc}
		$I_{\rm S} = 40 \rm A$	T _J = 125°C		0.60		\neg
Reverse Recovery Time	t _{rr}		1		50		ns
Charge Time	t _a	V _{GS} = 0 V, I _S = 100 A,			25		1
Discharge Time	t _b		20 A/µs		25		1
Reverse Recovery Stored Charge	Q _{RR}	4			71		nC

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

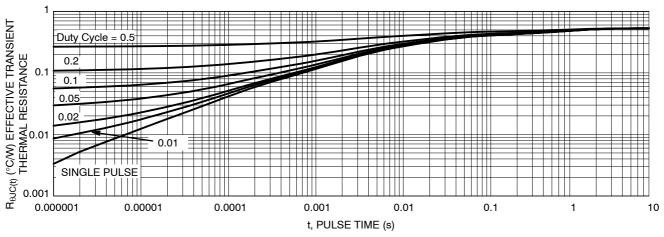
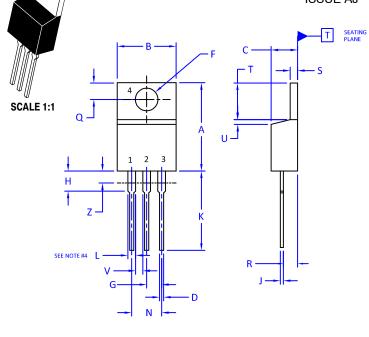


Figure 12. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTP5860NLG	TO-220AB (Pb-Free)	50 Units / Rail
NTB5860NLT4G	D ² PAK (Pb–Free)	800 / Tape & Reel
NVB5860NLT4G*	D ² PAK (Pb–Free)	800 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

DATE 05 NOV 2019

TO-220 CASE 221A-09 ISSUE AJ

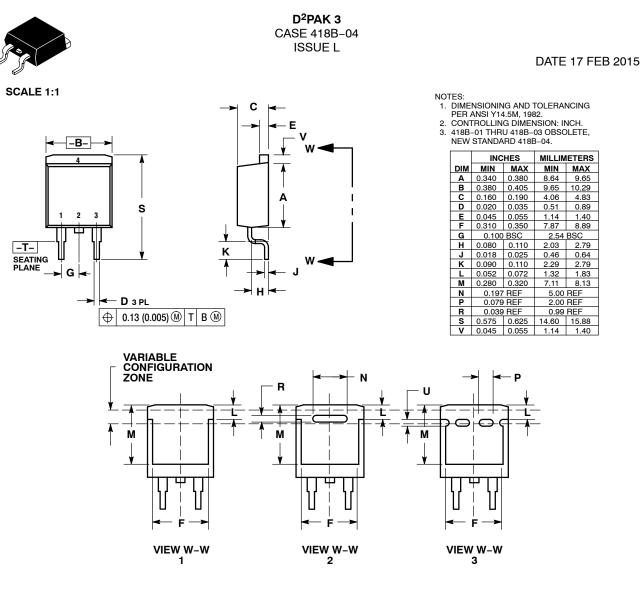
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.

2. CONTROLLING DIMENSION: INCHES

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

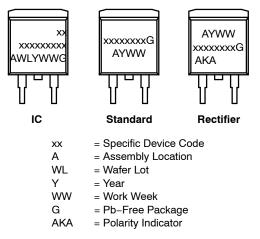

	INC	INCHES		ETERS
DIM	MIN.	MAX.	MIN.	MAX.
А	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	EMITTER	3.	CATHODE ANODE GATE ANODE	STYLE 4: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	2. 3.	CATHODE ANODE CATHODE ANODE	STYLE 8: PIN 1. 2. 3. 4.	••••••
STYLE 9: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 10: PIN 1. 2. 3. 4.	GATE SOURCE DRAIN	STYLE 11: PIN 1. 2. 3. 4.	DRAIN SOURCE GATE	STYLE 12 PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		
ON Semiconductor reserves the right to the suitability of its products for any par	o make changes without further notice to an rticular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

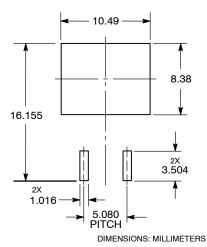
 $\ensuremath{\textcircled{}}$ Semiconductor Components Industries, LLC, 2019

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. GATE	PIN 1. CATHODE	PIN 1. NO CONNECT
2. COLLECTOR	2. DRAIN	2. CATHODE	2. COLLECTOR	2. ANODE	2. CATHODE
3. EMITTER	SOURCE	ANODE	3. EMITTER	CATHODE	3. ANODE
4. COLLECTOR	4. DRAIN	4. CATHODE	4. COLLECTOR	4. ANODE	4. CATHODE


MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	D ² PAK 3		PAGE 1 OF 2		
the suitability of its products for any p	articular purpose, nor does ON Semiconducto	Istries, LLC dba ON Semiconductor or its subsidiaries in the United States ny products herein. ON Semiconductor makes no warranty, representation or assume any liability arising out of the application or use of any product o ncidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically		

D²PAK 3 CASE 418B-04 ISSUE L


DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative