

DIN-Signal high current f, 20A crimp

Part number	09 03 000 6214
Specification	DIN-Signal high current f, 20A crimp
HARTING eCatalogue	https://b2b.harting.com/09030006214

Image is for illustration purposes only. Please refer to product description.

Identification

Category	Contacts
Series	DIN 41612
Type of contact	Crimp contact
Description of the contact	Straight
Contacts for	DIN 41612 Type M DIN 41612 Type M invers DIN 41612 Type MH 21+5 DIN 41612 Bauform M 0+2 har-modular® M module, female, straight

Version

Gender	Female contact for female connectors
Manufacturing process	Turned contacts

Technical characteristics

Conductor cross-section	4 mm²
Conductor cross-section	AWG 12
Operating current	≤20 A
Performance level	1
Mating cycles	≥500

Material properties

Material (contacts)	Copper alloy
Surface (contacts)	Noble metal over Ni Mating side

Material properties

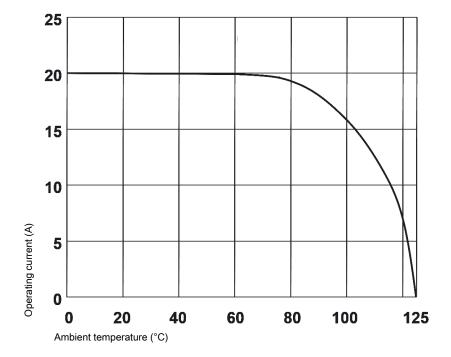
RoHS	compliant with exemption
RoHS exemptions	6(c): Copper alloy containing up to 4 % lead by weight
ELV status	compliant with exemption
China RoHS	50
REACH Annex XVII substances	Not contained
REACH ANNEX XIV substances	Not contained
REACH SVHC substances	Yes
REACH SVHC substances	Lead
ECHA SCIP number	339476a1-86ba-49e9-ab4b-cd336420d72a
California Proposition 65 substances	Yes
California Proposition 65 substances	Nickel Lead

Specifications and approvals

DIN 41626
5.11 11020

Commercial data

Packaging size	100
Net weight	2.06 g
Country of origin	Germany
European customs tariff number	85366990
eCl@ss	27440204 Contact for industrial connectors



Current carrying capacity

60512-5-2

The current carrying capacity of the connectors is limited by the thermal load capability of the contact element material including the connections and the insulating parts. The derating curve is therefore valid for currents which flow constantly (non-intermittent) through each contact element of the connector evenly, without exceeding the allowed maximum temperature.

Measuring and testing techniques acc. to IEC

