DC-DC Converters PCB Mount Type Instruction Manual

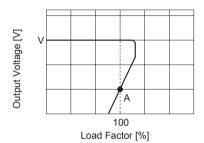
1 Functions	SU.SUC/SUT-52
 1.2 Overcurrent Protection 1.3 Isolation 	SU.SUC/SUT-52 SU.SUC/SUT-52 SU.SUC/SUT-52 SU.SUC/SUT-52 SU.SUC/SUT-52
2 Wiring to Input/Output Pin Terminals	SU.SUC/SUT-53
3 Series/Parallel Operation	SU.SUC/SUT-54
3.1 Series Operation	SU.SUC/SUT-54 SU.SUC/SUT-54
4 Input Voltage/Current Range	SU.SUC/SUT-55
5 Cleaning	SU.SUC/SUT-55
6 Safety Standards	SU.SUC/SUT-55
7 Temperature Measuring Point	SU.SUC/SUT-56
8 Peak Current (Pulse Load)	SU.SUC/SUT-58
9 Using DC-DC Converters	SU.SUC/SUT-59
10 Options	SU.SUC/SUT-60
10.1 Outline of Options	SU.SUC/SUT-60
11 Delivery Package Information	SU.SUC/SUT-61

1 Functions

1.1 Input Voltage Range

If output voltage value doesn't fall within specifications, a unit may not operate in accordance with specifications and/or fail.

1.2 Overcurrent Protection


Overcurrent Operation

COSEL

An overcurrent protection circuit is built-in and activated over 105% of the rated current or above. It prevents the unit from short circuit and overcurrent for less than 20 seconds. The unit automatically recovers when the fault condition is removed.

Current Foldback Characteristic

If a model that has a current foldback characteristic is connected to a non-linear load such as lamp or motor, or to a constant current load, it may not start up. Please see the characteristics below.

------ : Load Characteristic of Power Supply

- ------: Characteristic of Load (Lamp, Motor or Constant Current Load, etc.)
- Note : The output may be locked out at Point A when the unit is connected to a lamp, motor or constant current load.

Fig.1.1 Current Foldback Characteristic

1.3 Isolation

- When you run a Hi-Pot test as receiving inspection, gradually increase the voltage to start. When you shut down, decrease the voltage gradually by using a dial. Please avoid a Hi-Pot tester with a timer because, when the timer is turned ON or OFF, it may generate a voltage a few times higher than the applied voltage.
- In the case of use in locations exposed to constant voltage between the input and the output of the unit is applied, please contact us.

1.4 Output Voltage Adjustment Range

- The output voltage is adjustable through an external potentiometer. Adjust only within the range of ±5% of the rated voltage.
- To increase the output voltage, turn the potentiometer clockwise and connect in such a way that the resistance value between (2) and (3) becomes small.

To decrease the output voltage, turn the potentiometer counterclockwise. Please use a wire as short as possible to connect to the potentiometer and connect it from the pin terminal on the power supply side. Temperature coefficient deteriorates when some types of resistors and potentiometers are used. Please use the following types.

$$\label{eq:resistor} \begin{split} \text{Resistor} & \text{Metal Film Type, Temperature Coefficient of } \pm 100 \text{ppm/}^{\circ}\text{C or below} \\ \text{Potentiometer} & \text{Cermet Type, Temperature Coefficient of } \pm 300 \text{ppm/}^{\circ}\text{C or below} \end{split}$$

- If output voltage adjustment is not required, open the pin terminal TRM.
- In the case of dual output, ±voltages are adjusted simultaneously.

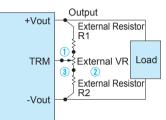


Fig.1.2 Connecting External Devices

Table 1.1 List of External Devices

Item #	Output Voltage	Constant of External Device [Ω] (Adjustable within ±5%)		
		VR	R1	R2
1	3.3V	1K	100	100
2	5V	1K	100	270
3	12V	5K	10K	1.2K
4	15V	5K	10K	470
5	±12V	5K	18K	470
6	±15V	5K	18K	470

1.5 Remote ON/OFF (Excluding 1R5)

You can turn the power supply ON or OFF without turning the input power ON or OFF through the pin terminal RC.

(1) SU/SUC3/SUT3 and SU/SUC6/SUT6

- The output of the power supply turns ON when the pin terminal RC is connected to the pin terminal -Vin. When the voltage of the pin terminal RC is between 2.0 to 9.0V, the output of the power supply goes OFF.
- When the voltage of the pin terminal RC is between 0.3 to 2.0V, the output voltage value may be an uncertain value which is less than the rated voltage.
- Please see the following diagram for how to use the pin terminal RC.

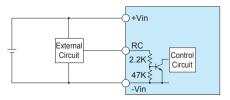


Fig.1.3 Internal Circuits of Remote ON/OFF

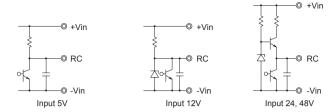


Fig.1.4 Examples of Using an External Remote ON/OFF Circuit

Table 1.2 Specification of Remote ON/OFF

Voltage Level of the pin terminal RC (V_{RC})	SU/SUC3/SUT3, SU/SUC6/SUT6 Output
Open or Short or 0V≦V _{RC} ≦0.3V	ON
2.0V≦V _{RC} ≦9.0V	OFF

Please keep the voltage level of the pin terminal RC (V_{RC}) at 9.0V or below.

If you do not use the Remote ON/OFF function, please short out between the pin terminals RC and -Vin to prevent malfunction.

(2) SU/SUC10/SUT10

COS

El

- The output of the power supply turns ON when the pin terminal RC is connected to the pin terminal -Vin. When the pin terminal RC is open or the voltage of the pin terminal RC is between 2.4 to 7.0 V, the output of the power supply goes OFF.
- When the voltage of the pin terminal RC is between 1.2 to 2.4V, an output voltage value may be an uncertain value which is less than the rated voltage.
- ■Please see the following diagram for how to use the pin terminal RC.

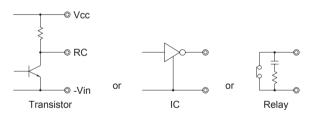


Fig.1.5 Examples of Using an External Remote ON/OFF Circuit

Table 1.3 Specification of Remote UN/UFF		
Voltage Level of the pin terminal RC (V $_{\text{RC}}$)	SU/SUC10/SUT10 Output	
Short or 0V≦V _{RC} ≦1.2V	ON	
Open or $24V \le V_{RC} \le 70V$	OFF	

Table 1.3	Specification	of Remote	ON/OFF

When the pin	terminal RC is at the "Low" level, outflowing current
is 0.5mA typ.	When Vcc is used, please make sure that the volt-
age of Vcc is	7.0V or less.

If you do not use the Remote ON/OFF function, please short out between the pin terminals RC and -Vin.

2 Wiring to Input/Output Pin Terminals

Basically, SU/SUC/SUT series do not need any external capacitor. However, you can create a π -shaped filter circuit by adding a capacitor Ci near the input pin terminal and reduce reflected input noise from a converter. Please connect the capacitor as needed.

- When you use a capacitor Ci, please use the one with high frequency and good temperature characteristics.
- If the power module is to be turned ON/OFF directly with a switch, inductance from the input line will induce a surge voltage several times that of the input voltage and it may damage the power module. Make sure that the surge is absorbed, for example, by connecting an electrolytic capacitor between the input pins.
- ■If an external filter containing L (inductance) is added to the input line or a wire from the input source to the DC-DC converter is long, not only the reflected input noise becomes large, but also the output of the converter may become unstable. In such case, connecting Ci to the input pin terminal is recommended.
- If you use an aluminum electrolytic capacitor, please pay attention to its ripple current rating.

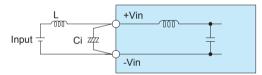
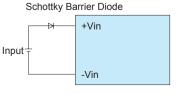


Fig.2.1 Connecting an External Capacitor to the Input Side

Table 2.1 Recommended Capacitance of an External Capacitor on the Input Side [μ F]


Model Input Voltage(V)	SU/SUC1R5	SU/SUC3/SUT3	SU/SUC6/SUT6	SU/SUC10/SUT10
5	10 - 100	10 - 220	10 - 470	10 - 470
12	10 - 47	10 - 100	10 - 220	10 - 220
24	10 - 33	10 - 47	10 - 100	10 - 100
48	4.7 - 10	10 - 22	10 - 47	10 - 47

*Please adjust the capacitance in accordance with a degree of the effect you want to achieve.

If a reverse polarity voltage is applied to the input pin terminal, the power supply will fail.

If there is a possibility that a reverse polarity voltage is applied, connect a protection circuit externally as described below.

Schottky barrier diode generates a power loss of input current multiplied by forward voltage.

COSEL

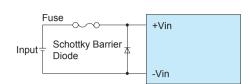


Fig.2.2 Connecting a Reverse Voltage Protection Circuit

Basically, SU/SUC/SUT series do not need any external capacitor. However, if you want to further reduce the output ripple noise, connect an electrolytic capacitor or a ceramic capacitor Co to the output pin terminal as shown below.

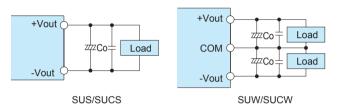
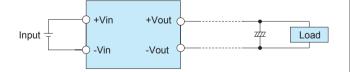
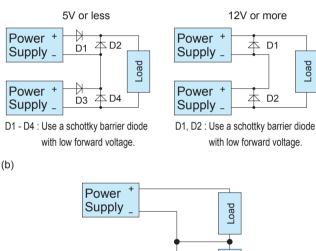



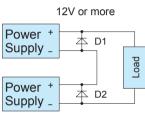
Fig.2.3 Connecting Example of an External Capacitor to the Output Side

	1			6 1
Model Output Voltage(V)	SU/SUC1R5	SU/SUC3/SUT3	SU/SUC6/SUT6	SU/SUC10/SUT10
3.3	1 - 100	1 - 220	1 - 220	1 - 220
5	1 - 100	1 - 220	1 - 220	1 - 220
12	1 - 100	1 - 100	1 - 100	1 - 100
15	1 - 100	1 - 100	1 - 100	1 - 100

Table 2.2 Recommended Capacitance of External Capacitor on the Output Side $[\mu F]$

- *If you use a ceramic capacitor, keep the capacitance within the range between about 0.1 to 10 μ F.
- *Please adjust the capacitance in light of the effect you want to achieve.
- *If you need to use an external capacitor whose capacitance exceeds the range provided in Table 2.2, please contact us.
- If the distance between the output and the load is long and therefore the noise is created on the load side, connect a capacitor externally to the load as shown below.




3 Series/Parallel Operation

3.1 Series Operation

(a)

■You can use the power supplies in series operation by wiring as shown below. In the case of (a) below, the output current should be lower than the rated current of a power supply with the lowest rated current among power supplies that are serially connected. Please make sure that no current exceeding the rated current flows into a power supply.

with low forward voltage.

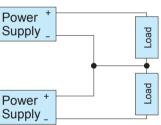


Fig.3.1 Series Operation

3.2 Redundancy Operation

■You can use the power supplies in redundancy operation by wiring as shown below.

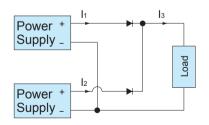
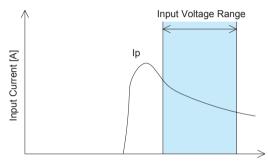


Fig.3.2 Redundancy Operation

Even a slight difference in output voltage can affect the balance between the values of I1 and I2.

Please make sure that the value of I3 does not exceed the rated current of a power supply.


I₃ ≤ Rated Current Value

DC-DC Converters PCB Mount Type Instruction Manual

4 Input Voltage/ Current Range

If you use a non-regulated power source for input, please check and make sure that its voltage fluctuation range and ripple voltage do not exceed the input voltage range shown in specifications.

■Please select an input power source with enough capacity, taking into consideration of the start-up current (Ip), which flows when a DC-DC converter starts up. Ip changes depending on the slope of input voltage, load factor and the external capacitor. Please contact us for details.

Input Voltage [V]

Fig.4.1 Input Current Characteristics

5 Cleaning (except SUC C-C)

If you need to clean the unit, please clean it under the following conditions.

Cleaning Method: Immersion, Ultrasonic or Vapor Cleaning

Cleaning agent: IPA (Solvent type)

Cleaning Time: Within total 2 minutes for immersion, ultrasonic and vapor cleaning

■Please dry the unit sufficiently after cleaning.

If you do ultrasonic cleaning, please keep the ultrasonic output at $15W/\ell$ or below.

6 Safety Standards

- To apply for a safety standard approval using the power supply, please meet the following conditions. Please contact us for details.
- Please use the unit as a component of an end device.
- •The area between the input and the output of the unit is isolated functionally. Depending upon the input voltage, basic insulation, dual insulation or enhanced insulation may be needed. In such case, please take care of it within the structure of your end-device. Please contact us for details.
- Please use the following model names when you apply for a safety standard approval.

•SU/SUC1R5 SUS1R5053R3 SUS1R50505 SUS1R50512 SUS1R50515 SUW1R50515 SUW1R50515	5 SUS1R5123R3 SUS1R51205 SUS1R51212 SUS1R51215 SUW1R51212 SUW1R51215	SUS1R5243R3 SUS1R52405 SUS1R52412 SUS1R52415 SUW1R52412 SUW1R52415	SUS1R5483R3 SUS1R54805 SUS1R54812 SUS1R54815 SUW1R54812 SUW1R54815
SUCS1R5053R3 SUCS1R50505 SUCS1R50512 SUCS1R50515 SUCW1R50512 SUCW1R50515	SUCS1R5123R3 SUCS1R51205 SUCS1R51212 SUCS1R51212 SUCW1R51215 SUCW1R51212 SUCW1R51215	SUCS1R5243R3 SUCS1R52405 SUCS1R52412 SUCS1R52412 SUCW1R52415 SUCW1R52412 SUCW1R52415	SUCS1R5483R3 SUCS1R54805 SUCS1R54812 SUCS1R54815 SUCW1R54812 SUCW1R54815
•SU/SUC3 SUS3053R3 SUS30505 SUS30512 SUS30515 SUW30512 SUW30515	SUS3123R3 SUS31205 SUS31212 SUS31215 SUW31212 SUW31215	SUS3243R3 SUS32405 SUS32412 SUS32415 SUW32412 SUW32415	SUS3483R3 SUS34805 SUS34812 SUS34815 SUW34812 SUW34815
SUCS3053R3 SUCS30505 SUCS30512 SUCS30515 SUCW30512 SUCW30515	SUCS3123R3 SUCS31205 SUCS31212 SUCS31215 SUCW31212 SUCW31215	SUCS3243R3 SUCS32405 SUCS32412 SUCS32415 SUCW32415 SUCW32415 SUCW32415	SUCS3483R3 SUCS34805 SUCS34812 SUCS34815 SUCW34812 SUCW34815
•SU/SUC6 SUS6053R3 SUS60505 SUS60512 SUS60515 SUW60512 SUW60515	SUS6123R3 SUS61205 SUS61212 SUS61215 SUW61212 SUW61215	SUS6243R3 SUS62405 SUS62412 SUS62415 SUW62412 SUW62415	SUS6483R3 SUS64805 SUS64812 SUS64815 SUW64812 SUW64815
SUCS6053R3 SUCS60505 SUCS60512 SUCS60515 SUCW60512 SUCW60515	SUCS6123R3 SUCS61205 SUCS61212 SUCS61215 SUCW61212 SUCW61215	SUCS6243R3 SUCS62405 SUCS62412 SUCS62415 SUCW62412 SUCW62415	SUCS6483R3 SUCS64805 SUCS64812 SUCS64815 SUCW64812 SUCW64815

•SU/SUC10

COSEL

•SU/SUC10 SUS100505 SUS100505 SUS100512 SUS100515 SUW100512 SUW100515	SUS10123R3 SUS101205 SUS101212 SUS101215 SUW101212 SUW101215	SUS10243R3 SUS102405 SUS102412 SUS102415 SUW102412 SUW102415	SUS10483R3 SUS104805 SUS104812 SUS104815 SUW104812 SUW104815
SUCS10053R3 SUCS100505 SUCS100512 SUCS100515 SUCW100512 SUCW100515	SUCS10123R3 SUCS101205 SUCS101212 SUCS101215 SUCW101212 SUCW101215	SUCS10243R3 SUCS102405 SUCS102412 SUCS102415 SUCW102412 SUCW102412	SUCS10483R3 SUCS104805 SUCS104812 SUCS104815 SUCW104812 SUCW104815
•SUT3 SUTS3053R3 SUTS30505 SUTS30512 SUTS30515 SUTW30512 SUTW30515	SUTS3123R3 SUTS31205 SUTS31212 SUTS31215 SUTW31212 SUTW31215	SUTS3243R3 SUTS32405 SUTS32412 SUTS32415 SUTW32412 SUTW32415	SUTS3483R3 SUTS34805 SUTS34812 SUTS34815 SUTW34812 SUTW34815
•SUT6 SUTS6053R3 SUTS60505 SUTS60512 SUTS60515 SUTW60512 SUTW60515	SUTS6123R3 SUTS61205 SUTS61212 SUTS61215 SUTW61212 SUTW61215	SUTS6243R3 SUTS62405 SUTS62412 SUTS62415 SUTW62412 SUTW62415	SUTS6483R3 SUTS64805 SUTS64812 SUTS64815 SUTW64812 SUTW64815
•SUT10 SUTS10053R3 SUTS100505 SUTS100512 SUTS100515 SUTW100512 SUTW100515	SUTS10123R3 SUTS101205 SUTS101212 SUTS101215 SUTW101212 SUTW101215	SUTS10243R3 SUTS102405 SUTS102412 SUTS102415 SUTW102412 SUTW102415	SUTS10483R3 SUTS104805 SUTS104812 SUTS104815 SUTW104812 SUTW104815

7 Temperature Measuring Point

7.1 SU/SUC1R5

(1) SU1R5

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point A in Fig.7.1 at 105°C or below.

Please also make sure that the ambient temperature does not exceed $85^{\circ}C$.

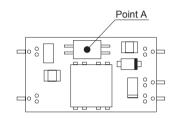


Fig.7.1 Temperature Measuring Point in the case of Forced Air Cooling

2 SUC1R5

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point B in Fig.7.2 at 95°C or below.

Please also make sure that the ambient temperature does not exceed $85^{\circ}C$.

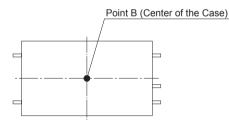


Fig.7.2 Temperature Measuring Point in the case of Forced Air Cooling (Upper Surface of the Case)

7.2 SU/SUC3

1) SU3

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point A in Fig.7.3 at 115°C or below and that of Point B at 120°C or below.

Please also make sure that the ambient temperature does not exceed $85^{\circ}C$.

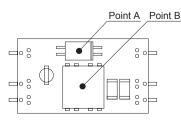


Fig.7.3 Temperature Measuring Points in the case of Forced Air Cooling

SUC3

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point C in Fig.7.4 at 100°C or below.

Please also make sure that the ambient temperature does not exceed $85\,^\circ\!\!\mathbb{C}.$

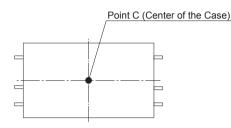


Fig.7.4 Temperature Measuring Point in the case of Forced Air Cooling (Upper Surface of the Case)

7.3 SU/SUC6

1) SU6

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point A in Fig.7.5 at 95°C or below and that of Point B at 115°C or below.

Please also make sure that the ambient temperature does not exceed $85^{\circ}C$.

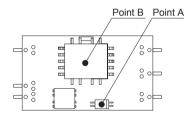
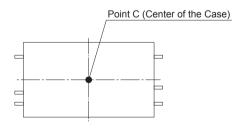


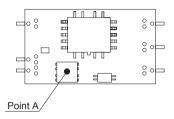
Fig.7.5 Temperature Measuring Points in the case of Forced Air Cooling

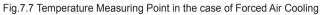
SUC6

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point C in Fig.7.6 at 95°C or below.

Please also make sure that the ambient temperature does not exceed $85^{\circ}C$.




Fig.7.6 Temperature Measuring Point in the case of Forced Air Cooling (Upper Surface of the Case)


7.4 SU/SUC10

1) SU10

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point A in Fig.7.7 at 105°C or below.

Please also make sure that the ambient temperature does not exceed $85^{\circ}C$.

2 SUC10

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point B in Fig.7.8 at 95°C or below.

Please also make sure that the ambient temperature does not exceed $85\,{}^\circ\!C$.

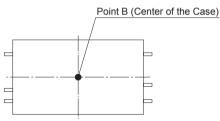


Fig.7.8 Temperature Measuring Point in the case of Forced Air Cooling (Upper Surface of the Case)

7.5 SUT3

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point A in Fig.7.9 at 100°C or below.

Please also make sure that the ambient temperature does not exceed $85\,^\circ\!C$.

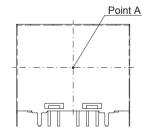


Fig.7.9 Temperature Measuring Point in the case of Forced Air Cooling

7.6 SUT6

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point A in Fig.7.10 at 95°C or below.

Please also make sure that the ambient temperature does not exceed 85° C.

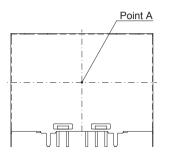


Fig.7.10 Temperature Measuring Point in the case of Forced Air Cooling

7.7 SUT10

■In the case of forced air cooling (1m/s), please have sufficient ventilation to keep the temperature of point A in Fig.7.11 at 95°C or below.

Please also make sure that the ambient temperature does not exceed 85° C.

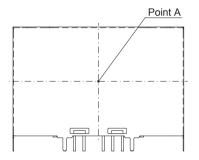
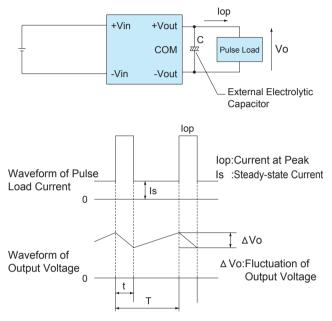



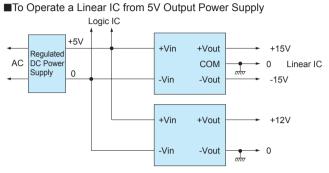
Fig.7.11 Temperature Measuring Point in the case of Forced Air Cooling

8 Peak Current (Pulse Load)

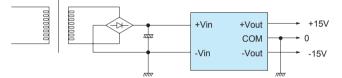
If a load connected to a converter is a pulse load, you can provide a pulse current by connecting an electrolytic capacitor externally to the output side.

The average output current lav is expressed in the following formula.

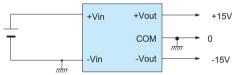
$$lav = ls + \frac{(lop - ls) \times t}{T}$$

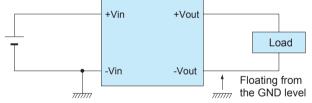

Required electrolytic capacitor C can be obtained from the following formula.

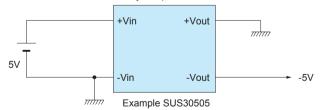
$$C = \frac{(lop - lav) \times t}{\Delta Vo}$$

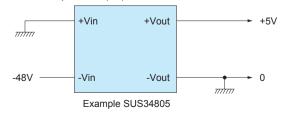

DC-DC Converters PCB Mount Type Instruction Manual

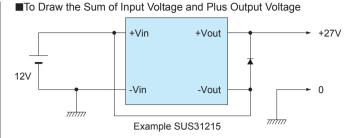
9 Using DC-DC Converters


COSEL


When Using a Non-regulated Power Source

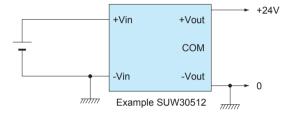

When Using a Battery-operated Device


When a Floating Mechanism is Required for the Output Circuit

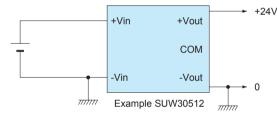


■To Draw a Reverse Polarity Output

■To provide a negative voltage to -Vin by using +Vin side of the converter as GND potential (0V)

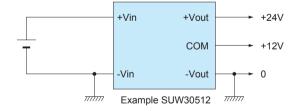


*Output current should be the same as the rated output current of the converter.

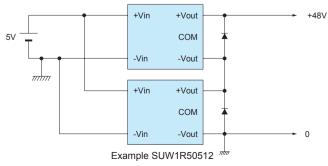

*Output voltage fluctuation is the sum of the input voltage fluctuation and the output voltage fluctuation of the converter.

■To Use a Dual Output Type

*Dual output type is typically used in the following manner.



*The unit can be used as a 24V type single output power supply as follows.



*Another way to use the unit is described below.

*The sum of +12V and +24V flows to the 0V line. Please make sure that this value does not exceed the rated output current of the converter.

■To Draw 48V Output

10 Options

COŞEL

10.1 Outline of Options

 $\ensuremath{\boldsymbol{\ast}}$ Please inquire us for details of specifications and delivery timing.

-C (Only SUC C)

- \cdot Conformal coating is applied to PCB and parts. For excessive harsh environment with corrosive gases condition such as H_2S.
- Differences from standard versions are summarized in Table 10.1.

Table 10.1 Coating Type

0.05mm min (Refer to Fig.10.1)
no approvals

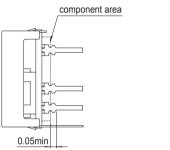
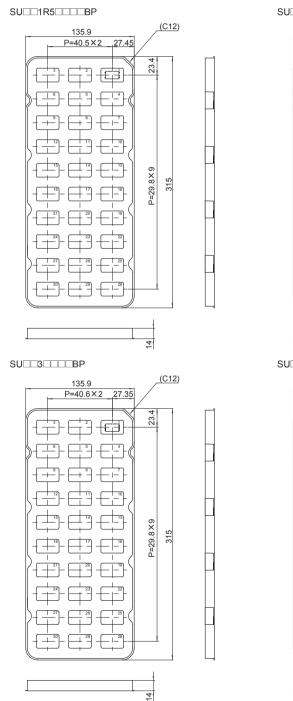
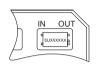


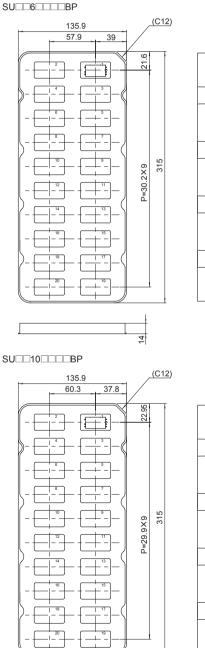
Fig.10.1 Clearance to user board

11 Delivery Package Information

■These are packed in a tray. (Fig.11.1)


CO\$EL |


Please order "SU____BP" for tray type packaging.


Table 12.1 Capacity of the tray (pcs/tray)

SU1R5	30max
SU3	30max
SU6	20max
SU10	20max

In case of fractions, the units are stored in numerical order.

4

Fig.11.1 Delivery package information June 26, 2020 Dimension in mm Material : Conductive PS

SU·SUC/SUT-61