ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Power MOSFET

40 V, 33 A, Single N-Channel, DPAK/IPAK

Features

- Low R_{DS(on)}
- High Current Capability
- Avalanche Energy Specified
- NVD and SVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- CCFL Backlight
- DC Motor Control
- Power Supply Secondary Side Synchronous Rectification

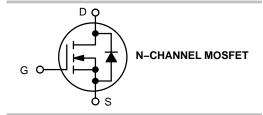
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltag	e – Contir	nuous	V _{GS}	±20	V
Gate-to-Source Voltage - Non-Repetitive (t _p < 10 μS)			V_{GS}	±30	V
Continuous Drain		T _C = 25°C	I _D	33	Α
Current (R _{0JC}) (Note 1)	Steady State	T _C = 100°C		23	
Power Dissipation (R _{θJC}) (Note 1)	State	T _C = 25°C	P _D	40	W
Pulsed Drain Current	t _p =	= 10 μs	I _{DM}	67	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			IS	33	Α
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = 50 V, V_{GS} = 10 V, R_{G} = 25 Ω , $I_{L(pk)}$ = 28 A, L = 0.1 mH, V_{DS} = 40 V)			E _{AS}	39	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

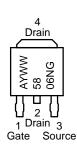
Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	3.7	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	57.5	

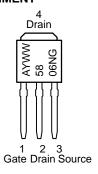

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS} R _{DS(on)} MAX		I _D MAX	
40 V	26 mΩ @ 4.5 V	33 A	
	19 mΩ @ 10 V	33 A	





IPAK CASE 369D (Straight Lead DPAK) STYLE 2

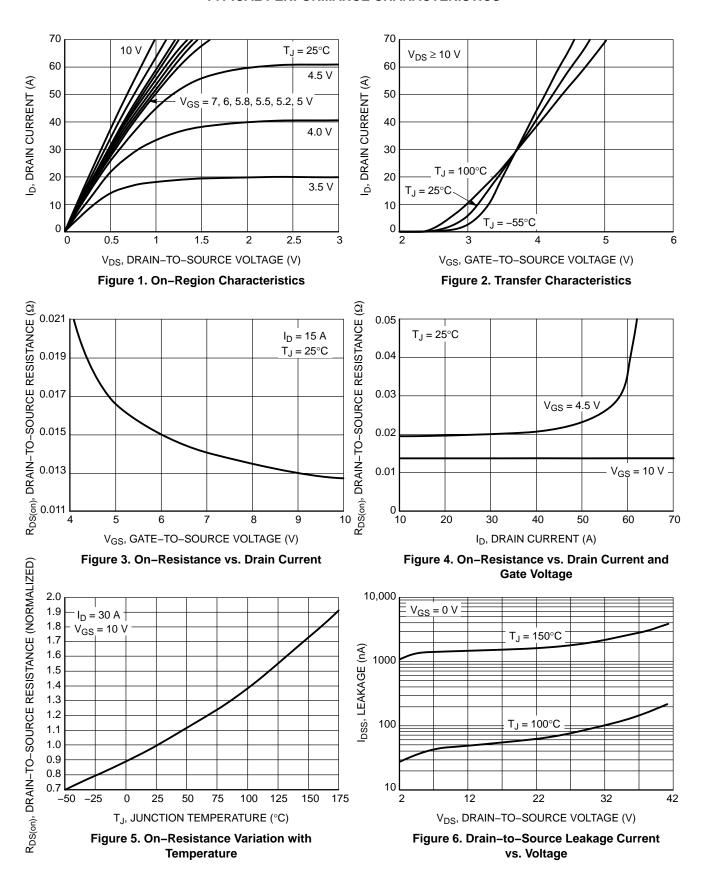
MARKING DIAGRAMS & PIN ASSIGNMENT

= Assembly Location*

= Year WW = Work Week 5806N = Device Code = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Cond	tion	Min	Тур	Max	Unit
OFF CHARACTERISTICS			<u>. </u>			ı	L
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40	45.5		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				29.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1.0	μΑ
		$V_{DS} = 40 \text{ V}$	T _J = 150°C			100	
Gate-to-Source Leakage Current	I_{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μΑ	1.4		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D$	= 15 A		12.7	19	mΩ
		V _{GS} = 4.5 V, I _E) = 10 A		17.8	26	
CHARGES, CAPACITANCES AND GAT	E RESISTANCE	S	•		•	•	•
Input Capacitance	C _{iss}				860		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 7$ $V_{DS} = 25$.0 MHz, V		130		
Reverse Transfer Capacitance	C _{rss}	VDS - 23	, and the second		100		
Total Gate Charge	Q _{G(TOT)}				17	38	nC
Threshold Gate Charge	Q _{G(TH)}	Vcs = 10 V. Vn	e = 20 V		0.95		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 10 \text{ V}, V_{DS} = 20 \text{ V},$ $I_{D} = 30 \text{ A}$			3.4		
Gate-to-Drain Charge	Q_{GD}				4.5		
SWITCHING CHARACTERISTICS (Note	e 3)		<u>'</u>		•		
Turn-On Delay Time	t _{d(on)}				10.6		ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{D}$	D = 20 V		93.7		
Turn-Off Delay Time	t _{d(off)}	$I_D = 30 \text{ A}, R_G$	= 2.5 Ω		14.2		
Fall Time	t _f				4.3		
Turn-On Delay Time	t _{d(on)}				8.0		ns
Rise Time	t _r	Vcs = 10 V. Vn	n = 20 V		49		
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, V_{DD} = 20 \text{ V},$ $I_{D} = 30 \text{ A}, R_{G} = 2.5 \Omega$			19.8		
Fall Time	t _f				2.6		
DRAIN-SOURCE DIODE CHARACTER	ISTICS		•		•	•	•
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V},$ $I_{S} = 10 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 150^{\circ}\text{C}$			0.86	1.2	V
					0.69		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/μs, I _S = 30 A			18.8		ns
Charge Time	ta				11.8		1
Discharge Time	tb				7.0		1
	Q _{RR}				10.9	 	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. 3. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

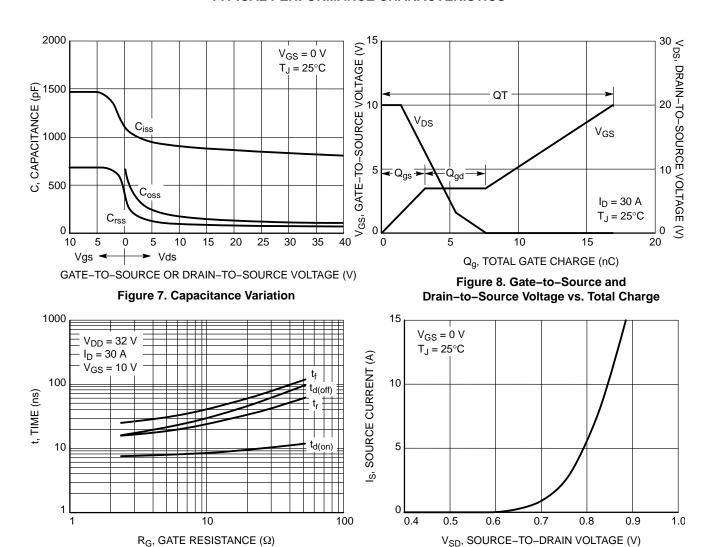


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

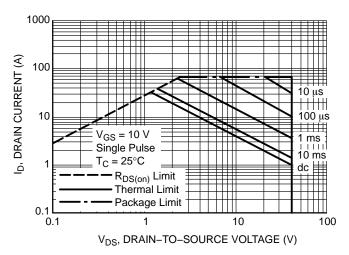


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CHARACTERISTICS

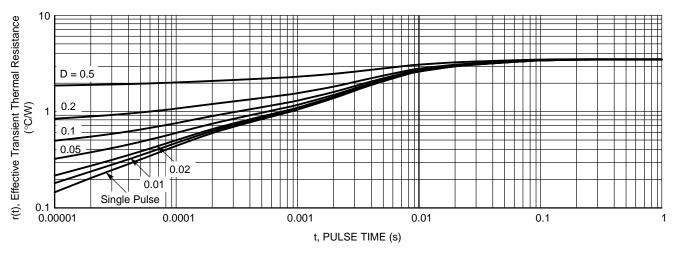


Figure 12. Thermal Response

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTD5806NG	IPAK (Straight Lead DPAK) (Pb-Free)	75 Units / Rail
NTD5806NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NVD5806NT4G*	DPAK (Pb-Free)	2500 / Tape & Reel
SVD5806NT4G*	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NVD and SVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C ISSUE E

NOTES:

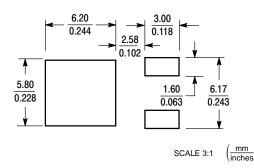
- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

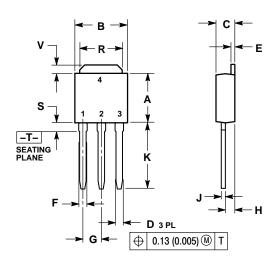
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

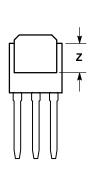

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.086	0.094	2.18	2.38		
A1	0.000	0.005	0.00	0.13		
b	0.025	0.035	0.63	0.89		
b2	0.028	0.045	0.72	1.14		
b3	0.180	0.215	4.57	5.46		
С	0.018	0.024	0.46	0.61		
c2	0.018	0.024	0.46	0.61		
D	0.235	0.245	5.97	6.22		
E	0.250	0.265	6.35	6.73		
е	0.090	BSC	2.29 BSC			
Н	0.370	0.410	9.40	10.41		
L	0.055	0.070	1.40	1.78		
L1	0.114	0.114 REF		2.90 REF		
L2	0.020 BSC		0.51 BSC			
L3	0.035	0.050	0.89	1.27		
L4		0.040		1.01		
Z	0.155		3.93			

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*



^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

IPAK CASE 369D ISSUE C

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MIN MAX		MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	0.090 BSC		BSC	
Н	0.034	0.040	0.87	1.01	
ſ	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Ζ	0.155		3.93		

STYLE 2:

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE 4. DRAIN

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative