ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Power MOSFET 30 V, 26 A, Single N-Channel, µ8FL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

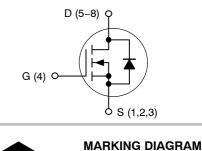
- DC-DC Converters
- Point of Load
- Power Load Switch
- Notebook Battery Management
- Motor Control

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	30	V		
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		$T_A = 25^{\circ}C$	I _D	7.3	А
Current R _{0JA} (Note 1)		T _A = 85°C	1	5.3	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.2	W
Continuous Drain		T _A = 25°C	I _D	10.3	А
Current R _{θJA} ≤ 10 s (Note 1)		$T_A = 85^{\circ}C$		7.5	
Power Dissipation $R_{\theta JA} \leq 10 \text{ s} \text{ (Note 1)}$	Steady	$T_A = 25^{\circ}C$	P _D	4.4	W
Continuous Drain	State	T _A = 25°C	۱ _D	4.6	А
Current $R_{\theta JA}$ (Note 2)		T _A = 85°C		3.3	
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25°C	P _D	0.84	W
Continuous Drain		$T_{\rm C} = 25^{\circ}{\rm C}$	I _D	26	А
Current $R_{\theta JC}$ (Note 1)		$T_C = 85^{\circ}C$		19	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	27.8	W
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	77	А
Operating Junction and S	itorage Ten	nperature	Т _Ј , T _{stg}	–55 to +150	°C
Source Current (Body Die	ode)		۱ _S	23	А
Drain to Source dV/dt	dV/dt	6.0	V/ns		
Single Pulse Drain-to-So $(T_J = 25^{\circ}C, V_{DD} = 50 \text{ V}, \text{V}_L = 18.3 \text{ A}_{pk}, \text{ L} = 0.1 \text{ mH}_2$	E _{AS}	16.7	mJ		
Lead Temperature for So (1/8" from case for 10 s)	dering Pur	poses	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	24 mΩ @ 10 V	26 A
	$36\mathrm{m}\Omega$ @ 4.5 V	20 A

N-Channel MOSFET

0 sd 4840 WDFN8 st (µ8FL) sd AYWW-CASE 511AB G 4840 = Specific Device Code

h D D D

DD

D

10-10	
۹.	= Assembly Location
Y	= Year
NW	= Work Week

= Pb-Free Package

۱

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4840NTAG	WDFN8 (Pb-Free)	1500/Tape & Reel
NTTFS4840NTWG	WDFN8 (Pb-Free)	5000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	4.5	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	57.5	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	149.2	
Junction-to-Ambient – (t \leq 10 s) (Note 3)	R _{0JA}	28.7	

3. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

4. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

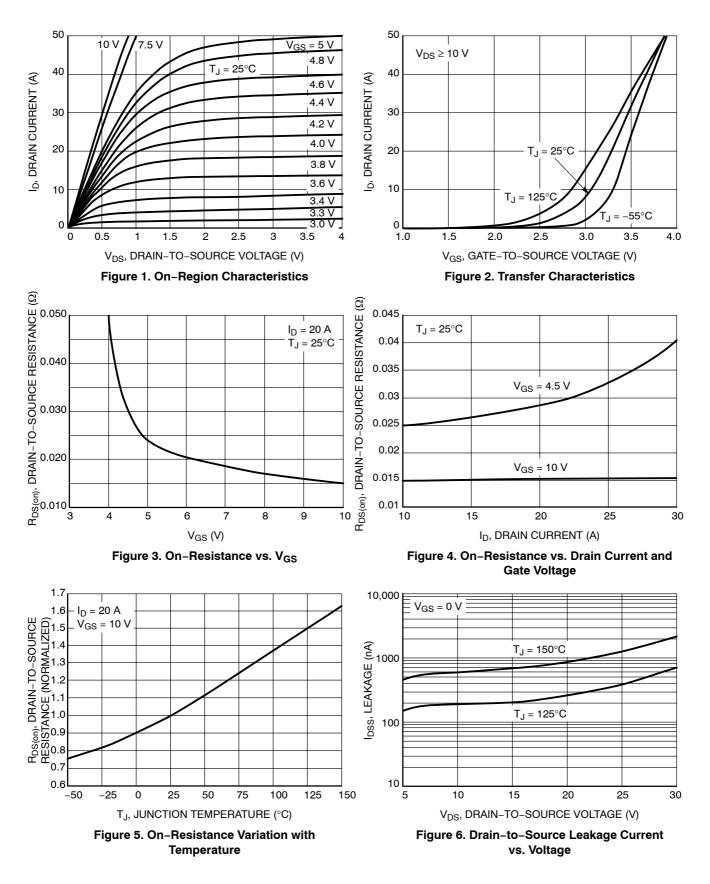
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D =	= 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				17		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$v_{GS} = 0 v,$	$T_J = 25^{\circ}C$			1.0	μΑ
			$T_J = 125^{\circ}C$			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$; = ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)							-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	1.5		3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.6		mV/°C
Drain-to-Source On Resistance	BDS(op)		In = 20 A		15	24	mΩ

Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V to 11.5 V	I _D = 20 A	15	24	mΩ
		$v_{GS} = 10 v to 11.5 v$	I _D = 10 A	15		
			I _D = 20 A	28	36	
		V _{GS} = 4.5 V	I _D = 10 A	25		
Forward Transconductance	9 FS	V _{DS} = 1.5 V, I _D =	20 A	22		S

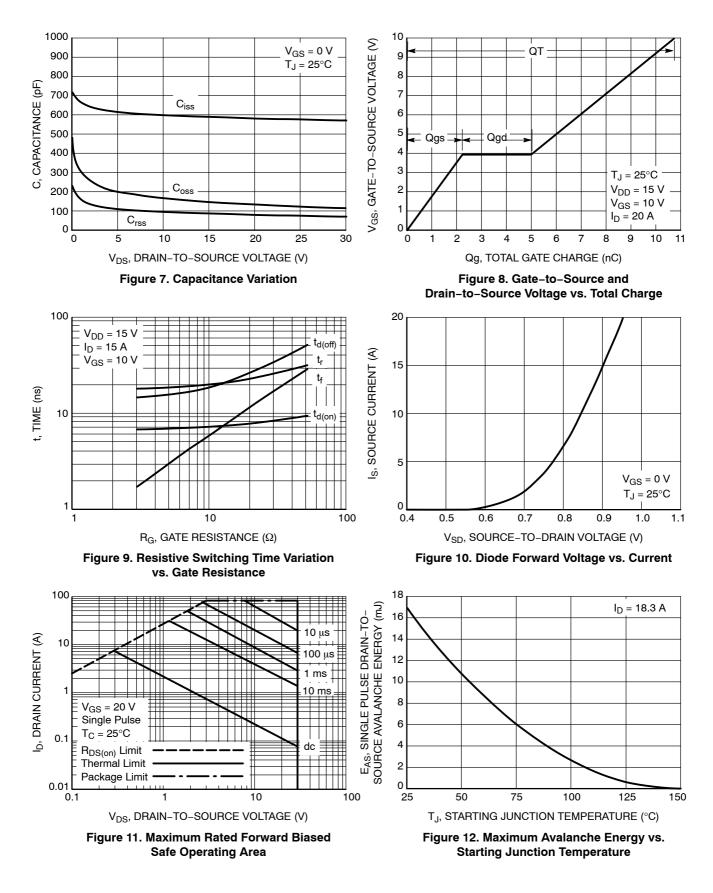
CHARGES AND CAPACITANCES

Input Capacitance	C _{iss}		580	pF
Output Capacitance	C _{oss}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V	140	
Reverse Transfer Capacitance	C _{rss}		80	
Total Gate Charge	Q _{G(TOT)}		5.5	nC
Threshold Gate Charge	Q _{G(TH)}		0.75	
Gate-to-Source Charge	Q _{GS}	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 20 A	2.2	
Gate-to-Drain Charge	Q _{GD}	1	2.8	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 20 A	10.8	nC
SWITCHING CHARACTERISTICS	(Note 6)	·		

5. Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%.


6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

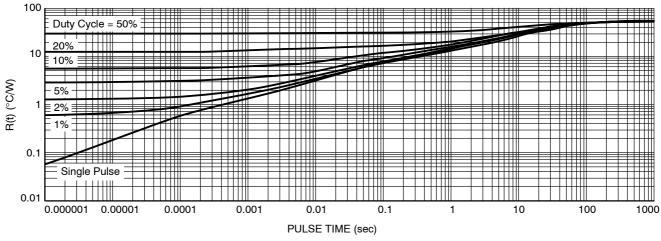
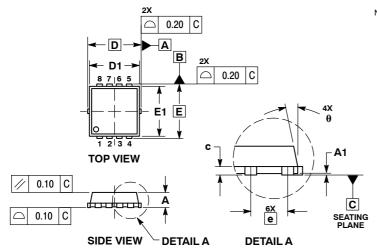
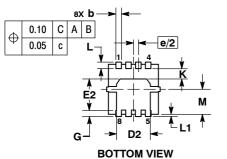

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC	S (Note 6)						
Turn-On Delay Time	t _{d(on)}				6.3		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS} =	= 15 V,		19.4		1
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 15 \rm A, R_{\rm G} =$	3.0 Ω		15.8		1
Fall Time	t _f				1.7		1
DRAIN-SOURCE DIODE CHARA	ACTERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, T _J = 25°C			0.96	1.2	V
	$I_{\rm S} = 20 {\rm A}$ $T_{\rm J} = 125^{\circ}{\rm C}$		0.87				
Reverse Recovery Time	t _{RR}				12.5		ns
Charge Time	t _a	$V_{GS} = 0 V, d_{IS}/d_t = 1$	100 A/μs,		7.7		1
Discharge Time	t _b	$V_{GS} = 0 V$, $d_{IS}/d_t = 1$ $I_S = 20 A$			4.8		
Reverse Recovery Charge	Q _{RR}		ľ		4.4		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S	T _A = 25°C			0.66		nH
Drain Inductance	L _D				0.20		1
Gate Inductance	L _G				1.5		1
Gate Resistance	R _G				2.0	3.0	Ω

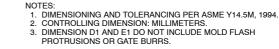
 $\begin{array}{ll} \text{5. Pulse Test: pulse width = 300 } \mu\text{s, duty cycle } \leq 2\%. \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \end{array}$

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

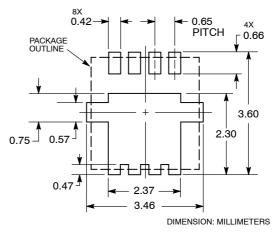
TYPICAL CHARACTERISTICS


Figure 13. Thermal Response

PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P CASE 511AB-01 ISSUE B



	МІ	LLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	;	3.30 BSC		0	.130 BSC)	
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E	;	3.30 BSC		0	.130 BSC)	
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
е	0.65 BSC			(0.026 BS	0	
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.64			0.025			
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
М	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use patent solut. Cwas negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative