Power MOSFET and Schottky Diode

30 V, 2.9 A, N–Channel with Schottky Barrier Diode, TSOP–6

Features

- Fast Switching
- Low Gate Change
- Low R_{DS(on)}
- Low V_F Schottky Diode
- Independently Connected Devices to Provide Design Flexibility
- This is a Pb–Free Device

Applications

- DC-DC Converters
- Portable Devices like PDA's, Cellular Phones, and Hard Drives

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Pa	Parameter			Value	Unit	
Drain-to-Source Vo	Drain-to-Source Voltage			30	V	
Gate-to-Source Vo	ltage		V _{GS}	±12	V	
N-Channel Continuous Drain Current (Note 1)	Steady State $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$		۱ _D	2.6 1.9	A	
	t≤5 s	$T_A = 25^{\circ}C$		2.9		
Power Dissipation			PD	0.9	W	
(Note 1)	t≤5 s			1.1		
Pulsed Drain Curre	nt	t _p = 10 μs	I _{DM}	8.6	А	
Operating Junction and Storage Temperature			T _J , T _{STG}	–25 to 150	°C	
Source Current (Body Diode)			I _S	0.9	А	
Lead Temperature t (1/8" from case for		urposes	ΤL	260	°C	

SCHOTTKY MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	30	V
DC Blocking Voltage	V _R	30	V
Average Rectified Forward Current	١ _F	1	А

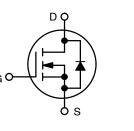
THERMAL RESISTANCE RATINGS

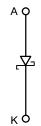
Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	140	°C/W
Junction-to-Ambient $- t \le 5 s$ (Note 1)	$R_{\theta JA}$	110	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®


http://onsemi.com


N-CHANNEL MOSFET

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
30 V	90 mΩ @ 4.5 V	2.6 A
00 1	125 mΩ @ 2.5 V	2.2 A

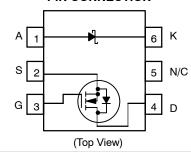
SCHOTTKY DIODE

V _R Max	V _F Max	I _F Max
30 V	0.53 V	1.0 A

N-Channel MOSFET

Schottky Diode

MARKING



TD = Specific Device Code

M = Date Code

= Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS				•			•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _E	_D = 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				21.4		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	$T_{J} = 25^{\circ}C$ $T_{J} = 85^{\circ}C$			1.0 10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	_{GS} = ±12 V			100	nA
ON CHARACTERISTICS (Note 2)	•				4	4	
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I	_D = 250 μA	0.5	0.9	1.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-3.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 4.5 V	I _D = 2.6 A		52	90	
		V _{GS} = 2.5 V	I _D = 2.2 A		67	125	mΩ
Forward Transconductance	9 FS	V _{DS} = 15 V, I _D = 2.6 A			2.6		S
CHARGES, CAPACITANCES AND GATE F	RESISTANCE						
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V			295		
Output Capacitance	C _{OSS}				48		pF
Reverse Transfer Capacitance	C _{RSS}				27		
Total Gate Charge	Q _{G(TOT)}				3.7	5.5	
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, \	/ _{DS} = 15 V,		0.6		nC
Gate-to-Source Charge	Q _{GS}	I _D = 2	.0 A		0.9		
Gate-to-Drain Charge	Q _{GD}				0.8		
SWITCHING CHARACTERISTICS (Note 3)							
Turn-On Delay Time	t _{d(ON)}				7.0		
Rise Time	t _r	V _{GS} = 4.5 V, V	/ _{DS} = 15 V,		4.0		
Turn-Off Delay Time	t _{d(OFF)}	I _D = 1.0 A, F	$R_{\rm G} = 6.0 \ \Omega$		14		ns
Fall Time	t _f	1			2.0		1
DRAIN-TO-SOURCE CHARACTERISTICS	3					-	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V IS = 0.9 A	$T_{\rm J} = 25^{\circ}C$		0.7	1.2	V
Reverse Recovery Time	t _{RR}		•		8.0		
Charge Time	T _a	V_{GS} = 0 V, d_{IS}/d_t = 100 A/µs, IS = 0.9 A			5.0		ns
Discharge Time	T _b				3.0		
Reverse Recovery Time	Q _{RR}				3.0		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.41	0.45	V
Forward Voltage		I _F = 1.0 A		0.46	0.53	
Maximum Instantaneous	۱ _R	V _R = 30 V		7.3	20	μΑ
Reverse Current		V _R = 20 V		2.5	8.0	

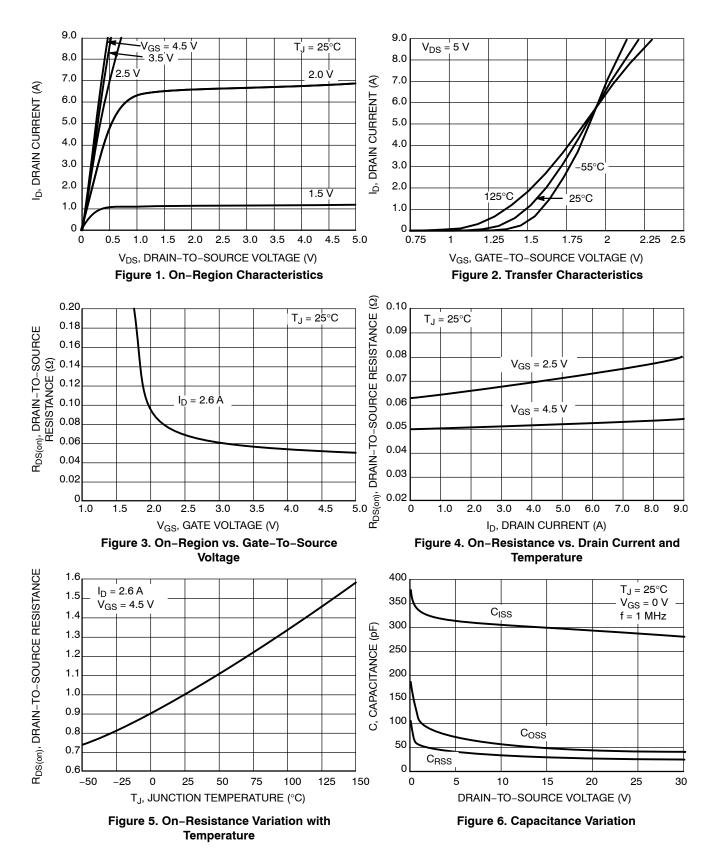
SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 85^{\circ}C$ unless otherwise noted)

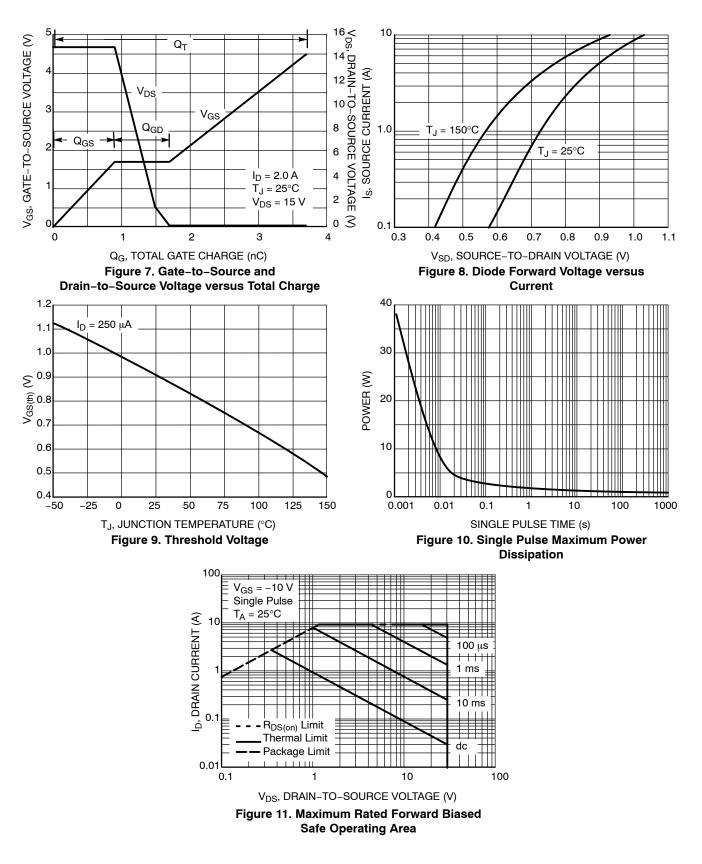
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.35		V
Forward Voltage		I _F = 1.0 A		0.41		
Maximum Instantaneous	I _R	V _R = 30 V		0.4		mA
Reverse Current		V _R = 20 V		0.17		

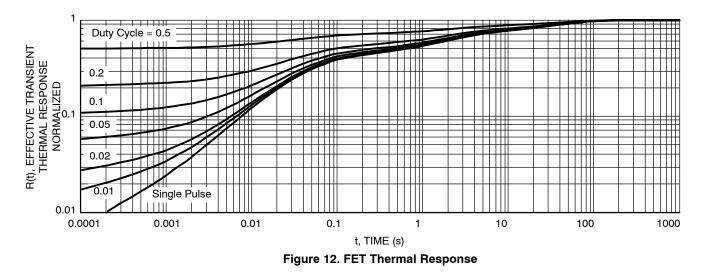
SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 125°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.5 A		0.31		V
Forward Voltage		I _F = 1.0 A		0.39		
Maximum Instantaneous	I _R	V _R = 30 V		4.4		mA
Reverse Current		V _R = 20 V		1.6		

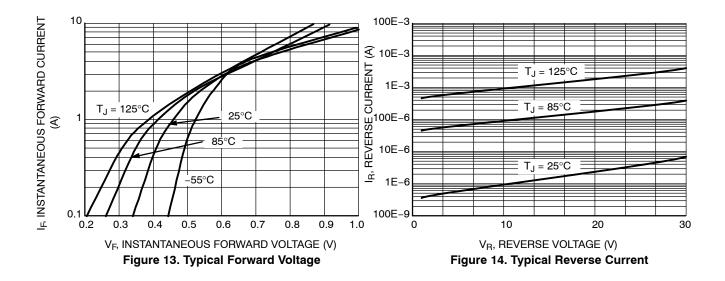
SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

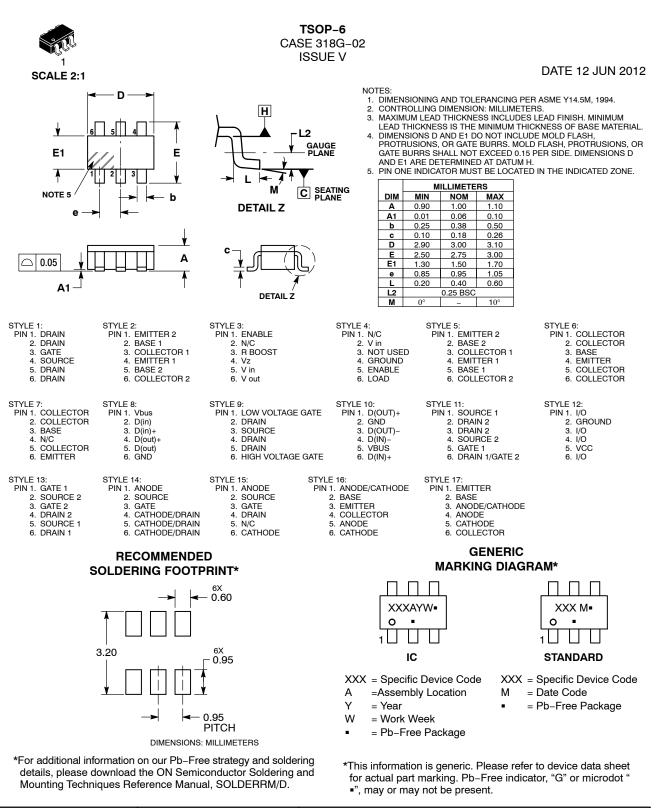

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Capacitance	С	V _R = 10 V, f = 1.0 MHz		28		pF


ORDERING INFORMATION


Device	Package	Shipping [†]
NTGD4169FT1G	TSOP–6 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


TYPICAL CHARACTERISTICS N-CHANNEL



98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
TSOP-6		PAGE 1 OF 1
_	98ASB14888C TSOP-6	98ASB14888C Printed versions are uncontrolled except when stamped "CONTROLLED "

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for dhers.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative