

- Designed for 403.55 MHz MICs Transmitters
- · Very Low Series Resistance
- · Quartz Stability
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481
- Moisture Sensitivity Level: 1
- AEC-Q200 Qualified

RoHS Compliant **RO3300E**

403.55 MHz SAW Resonator

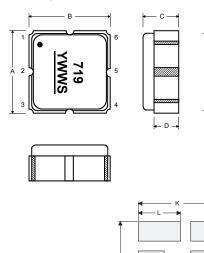
The RO3300E is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 403.55 MHz.

Absolute Maximum Ratings

Rating	Value	Units
Input Power Level	0	dBm
DC Voltage	12	VDC
Storage Temperature Range	-40 to +125	°C
Operating Temperature Range	-40 to +105	°C
Soldering Temperature (10 seconds / 5 cycles maximum)	260	°C

Electrical Characteristics

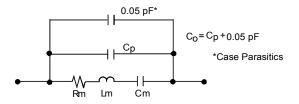
Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency, +25 °C	Absolute Frequency	f _C		403.475		403.625	MHz
	Tolerance from 403.55 MHz	Δf_{C}				±75	kHz
Insertion Loss		IL			1.0	2.0	dB
Quality Factor	Unloaded Q	Q _U			8117		
	50 Ω Loaded Q	Q_L			768		
Temperature Stability	Turnover Temperature	T _O		10	25	40	°C
	Turnover Frequency	f _O			f _C		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A			≤10		ppm/yr
DC Insulation Resistance between Any Two Terminals				1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M			10.5		Ω
	Motional Inductance	L _M			33.5		μH
	Motional Capacitance	C _M			4.6		fF
	Shunt Static Capacitance	Co			4.2		pF
Test Fixture Shunt Inductance		L _{TEST}			36.9		nH
Lid Symbolization (in addition to Lot and/or Date Codes)			•	719	9, <u>YWWS</u>		•
Standard Reel Quantity	Reel Size 7 Inch			5	00 Pieces/Red	el	
			3	000 Pieces/Re	eel		

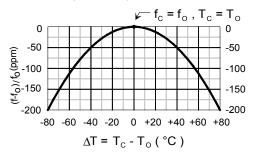

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:

- 1. The design, manufacturing process, and specifications of this device are subject to change.
- 2. US or International patents may apply.
- 3. RoHS compliant from the first date of manufacture.

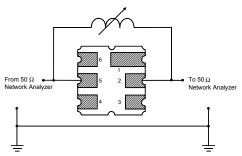
Electrical Connections

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

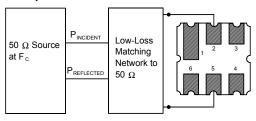

Pin	Connection		
1	NC		
2	Terminal		
3	NC		
4	NC		
5	Terminal		
6	NC		


Ref	mm			Inches		
	Min	Nom	Max	Min	Nom	Max
Α	2.87	3.00	3.13	0.113	0.118	0.123
В	2.87	3.00	3.13	0.113	0.118	0.123
С	1.12	1.25	1.38	0.044	0.049	0.054
D	0.77	0.90	1.03	0.030	0.035	0.040
Е	2.67	2.80	2.93	0.105	0.110	0.115
F	1.47	1.60	1.73	0.058	0.063	0.068
G	0.72	0.85	0.98	0.028	0.033	0.038
Н	1.37	1.50	1.63	0.054	0.059	0.064
ı	0.47	0.60	0.73	0.019	0.024	0.029
J	1.17	1.30	1.43	0.046	0.051	0.056
K		3.20			0.126	
L		1.70			0.067	
M		1.05			0.041	
N		0.81			0.032	
0		0.38			0.015	

Equivalent RLC Model

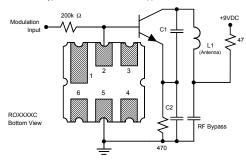

Temperature Characteristics

The curve shown accounts for resonator contribution only and does not include external LC component temperature effects.

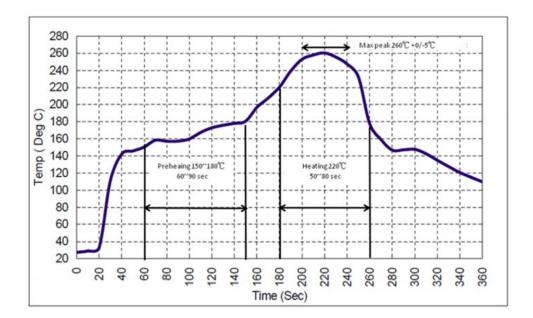


Characterization Test Circuit

Inductor L_{TEST} is tuned to resonate with the static capacitance, C_{O} , at F_{C} .



Power Dissipation Test


Example Application Circuits

Typical Low-Power Transmitter Application

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

