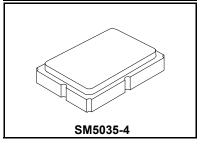


- Designed for European 868.95 MHz SRD Transmitters
- Very Low Series Resistance
- Quartz Stability
- Surface-mount Ceramic Case
- Complies with Directive 2002/95/EC (RoHS)
- Tape and Reel Standard per ANSI/EIA-481
- AEC-Q200 Qualified

The RO3156A is a one-port surface-acoustic-wave (SAW) resonator packaged in a surface-mount ceramic case. It provides reliable, fundamental-mode quartz frequency stabilization of fixed-frequency transmitters operating at 868.95 MHz. The RO3156A is designed specifically for SRD transmitters operating in Europe under ETSI EN 300 220-2.


Absolute Maximum Ratings

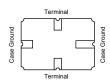
Rating	Value	Units	
CW RF Power Dissipation	+5	dBm	
DC Voltage Between Terminals	±30	VDC	
Case Temperature	-40 to +85	°C	
Soldering Temperature, 10 seconds / 5 cycles maximum	260	°C	

RO3156A

868.95 MHz SAW Resonator

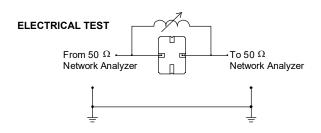
Electrical Characteristics

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units
Frequency, +25 °C				868.750		869.150	
		f_{C}					MHz
Tolerance from 868.95 MHz						±200	
		Δf_{C}					kHz
Insertion Loss		IL			1.2	2.0	dB
Quality Factor	Unloaded Q	Q_U			6200		
	50 Ω Loaded Q	Q_L			850		
Temperature Stability	Turnover Temperature	T _O		10	25	40	°C
	Turnover Frequency	f _O			f_{C}		kHz
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	fA			<±10		ppm/yr
DC Insulation Resistance be	tween Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			14.5		Ω
	Motional Inductance	L_M			18.0		μH
	Motional Capacitance	C _M			2.0		fF
	Shunt Static Capacitance	Co			2.1		pF
Test Fixture Shunt Inductance	е	L _{TEST}			15.8		nH
Lid Symbolization		-	714, <u>YYWW</u> \$	<u>S</u>			

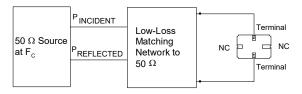

W

▲ CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. NOTES:

- 1. The design, manufacturing process, and specifications of this device are subject to change.
- 2. US or International patents may apply.
- 3. RoHS compliant from the first date of manufacture.


Electrical Connections

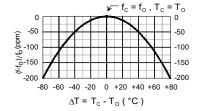
The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.



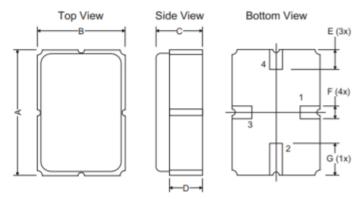
Typical Test Circuit

The test circuit inductor, $\rm L_{TEST}$, is tuned to resonate with the static capacitance, $\rm C_O$, at $\rm F_C$.

POWER TEST

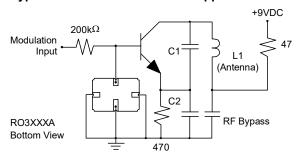

CW RF Power Dissipation = P INCIDENT - P REFLECTED

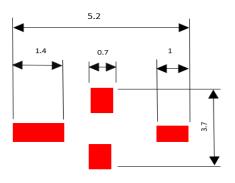
Equivalent RLC Model



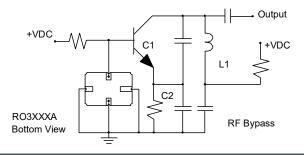
Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

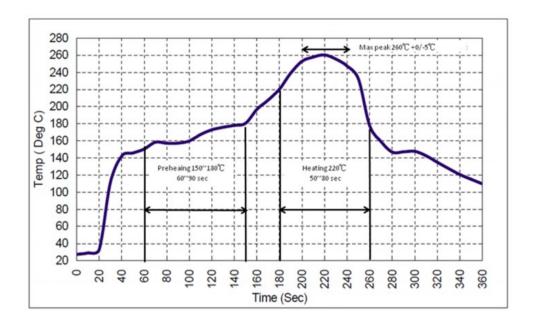



Case

Typical Application Circuits


Typical Low-Power Transmitter Application

PCB Footprint


Typical Local Oscillator Applications

Dimensions	Millimeters			Inches		
	Min	Nom	Max	Min	Nom	Max
Α	4.87	5.00	5.13	0.191	0.196	0.201
В	3.37	3.50	3.63	0.132	0.137	0.142
С	1.45	1.53	1.60	0.057	0.060	0.062
D	1.35	1.43	1.50	0.040	0.057	0.059
E	0.67	0.80	0.93	0.026	0.031	0.036
F	0.37	0.50	0.63	0.014	0.019	0.024
G	1.07	1.20	1.33	0.042	0.047	0.052

Recommended Reflow Profile

- 1. Preheating shall be fixed at 150~180°C for 60~90 seconds.
- 2. Ascending time to preheating temperature 150°C shall be 30 seconds min.
- 3. Heating shall be fixed at 220°C for 50~80 seconds and at 260°C +0/-5°C peak (10 seconds).
- 4. Time: 5 times maximum.

