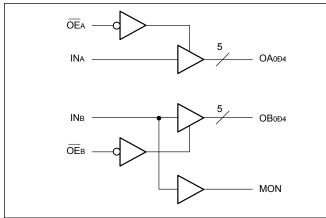


3.3V, 2 x 1:5 CMOS Clock Driver


Features

- Low output skew: <200ps →
- Switching frequency up to 166 MHz →
- → Fast output rise/fall time: <1.0ns
- Low propagation delay: <2.5ns →
- Low input capacitance: <6.0pF →
- Balanced CMOS outputs →
- Industrial Temperature: -40°C to +85°C →
- 3.3V ±10% operation, 5V Input Tolerant →
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) →
- Halogen and Antimony Free. "Green" Device (Note 3) →
- For automotive applications requiring specific change control → (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

- Packaging (Pb-free & Green available): →
 - 20-pin, 150-mil wide QSOP (Q)
 - 20-pin, 209-mil wide SSOP (H)

Block Diagram

Description

Diodes' PI49FCT3805D is composed of non-inverting drivers. The outputs are configured into 2 groups of one-in, five-out with independent output enable. Group B has an extra MON output. Excellent output signals to power and ground ratio minimize power and ground noise and also improves output performance.

Truth	Table ⁽¹⁾
--------------	----------------------

Inputs		Outputs		
OE X	INX	OAX	MON	
L	L	L	L	
L	Н	Н	Н	
Н	L	Z	L	
Н	Н	Z	Н	

Note:

H = High Voltage Level, L = Low Voltage Level, 1. Z = High Impedance

antimony compounds.

Notes:

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

^{2.} See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

Pin Configuration

	1 U 20	и и и и и и и и и и и и и и и и и и и
0A0 🗖	2 19	ОВО
OA1 🕻	3 18	ОВ1
0A2 🕻	4 17	ОВ2
GNDA 🕻	5 16	GNDB
OA3 🛙	6 15	р овз
0A4 🗖	7 14	р ов4
GNDQ 🛙	8 13	П мом
OEA 🕻	9 12	D OEB
INA 🗖	10 11	р ілв
		-

Pin Description

Pin Name	Description	
\overline{OE}_X	Hi-Z State Output Enable Inputs (Active Low)	
INX	Clock Inputs	
OA _N , OB _N	Clock Outputs	
MON	Monitor Output	
GND	Ground	
V _{CC}	Power	

Note:

PI49FCT3805D

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
Ambient Temperature with Power Applied40°C to +85°C
Input Voltage to GND Potential (Inputs & V _{CC} Only) –0.5V to 5.5V
Output Voltage to GND Potential (Outputs & I/O Only)–0.5V to +V _{CC} +0.5V
V _{CC} Input Voltage–0.5V to +4.6V

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Symbol	Parameters	Test Conditions ⁽¹⁾	Min.	Тур.	Max.	Units
V _{OH}	Output High Voltage V_{CC} = Min., V_{IN} = V_{IL} or V_{IH}	$I_{OH} = -0.1mA$ $I_{OH} = -8mA$ $I_{OH} = -12mA$	$\begin{array}{c c} V_{CC}\text{-}0.2 \\ 2.4^{(3)} \\ 2.4^{(3)} \end{array}$	3.0 3.0		
V _{OL}	$\begin{array}{l} \text{Output Low Voltage} \\ \text{V}_{\text{CC}} = \text{Min.,} \\ \text{V}_{\text{IN}} = \text{V}_{\text{IL}} \text{ or } \text{V}_{\text{IH}} \end{array}$	$I_{OH} = 0.1 mA$ $I_{OH} = 8 mA$ $I_{OH} = 12 mA$		0.2 0.3	0.2 0.4 0.4	V
V _{IH}	Input High Voltage	Low Logic	2.0		5.5	
V _{IL}	Input Low Voltage	High Logic	-0.5		0.8	
I _{IH}	Input High Current	V_{CC} = Max., V_{IN} = 5.5V			1	
I _{IL}	Input Low Current	V _{CC} = Max., V _{IN} = GND			-1	μΑ
I _{OZH} I _{OZL}	High Impedance output current				1 -1	, pri
V _{IK}	Clamp Diode Voltage	V_{CC} = Min., I_{IN} = -18mA		-0.7	-1.2	V
I _{ODH}	Output High Current ^(4, 5)	$V_{OUT} = 1.5V$, $V_{IN} = V_{IL}$ or V_{IH} , $V_{CC} = 3.3V$	-40	-74	-100	
I _{ODL}	Output Low Current ^(4, 5)	$V_{OUT} = 1.5V$, $V_{IN} = V_{IL}$ or V_{IH} , $V_{CC} = 3.3V$	50	90	130	mA
I _{OS}	Short Circuit Current ^(4, 5)	V _{CC} = Max., V _{OUT} = GND	-60	-100	-120	

DC Electrical Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 0.3V$)

Notes:

For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. 1

Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient and maximum loading. 2.

 $V_{OH} = V_{CC} - 0.6V$ at rated current. 3.

4. This parameter is determined by device characterization but is not production tested.

5. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	3.0	4	чE
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	—	6	pF

Note:

This parameter is determined by device characterization but is not production tested. 1.

Power Supply Characteristics

Parameters	Description	Test Co	onditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	V _{CC} = Max.	$V_{IN} = GND \text{ or } V_{DD}$		0.1	30	
I _{DD}	Dynamic Supply Current per Output	$V_{CC} = 3.6V,$ $C_L = 15pF,$ All Outputs Toggling			80	120	μΑ
$V_{CC} = 3.6V,$ $C_{I} = 15pF_{s}$	$V_{CC} = 3.6V,$ $C_{L} = 15pF,$	V _{IN} = V _{CC} or GND		100	135		
Ŧ	Total Power Supply	All Outputs Toggling,	$V_{IN} = V_{CC}$ -0.6V or GND		100	135	mA/
I _C	Current	$V_{CC} = 3.6V,$ $C_{L} = 15pF,$	$V_{IN} = V_{CC}$ or GND		120	160	MHz
	All Outputs Toggling, $f_i = 166 \text{ MHz}$	$V_{IN} = V_{CC}$ -0.6V or GND		120	160		
ΔI_{CC}	Supply Current per inputs @ TTL High	V _{CC} = Max.	$V_{\rm IN} = V_{\rm CC} - 0.6 V^{(3)}$		45	300	μΑ

Notes:

For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device. 1.

Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient. 2.

Per TTL driven input ($V_{IN} = V_{CC} - 0.6V$); all other inputs at V_{CC} or GND. 3.

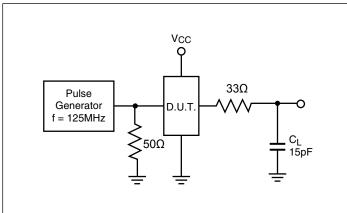
Switching Characteristics over Operating Range

Demonsterne	Description	Test Conditions ⁽¹⁾	3805D	TT	
Parameters	Description	Test Conditions ^v	Max.	Units	
t _{PLH} t _{PHL}	Propagation Delay IN_N to O_N		3.0	ns	
t _R /t _F	CLKn Rist/Fall Time 0.8V ~ 2.0V		1.5	ns	
$t_{SK(o)}^{(3)}$	Pulse Skew	$C_{L} = 15 pF,$	270		
$t_{SK(p)}^{(3)}$	Output Skew	133 MHz (3805D)	270	ps	
t _{SK(t)} ⁽³⁾	Package Skew		550		
$t_{ZL}, t_{ZH}, t_{LZ}, t_{HZ}$	Enable/Disable Time		5.2	ns	
F _{MAX}	Input Frequency		133	MHz	
Note:		•			

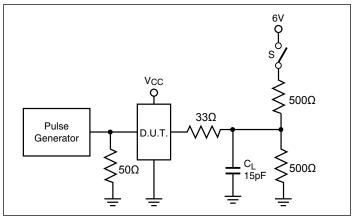
1. These parameters are guaranteed by design

2. Series Resistor loading = 33Ω (See Test Circuit)

Switch Position

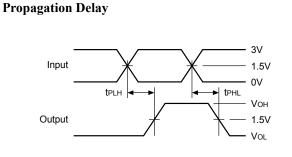

Test	Switch
Disable LOW Enable LOW	6V
Disable HIGH Enable HIGH	GND
All Other Inputs	Open

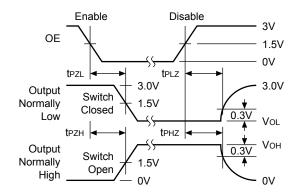
Definitions:

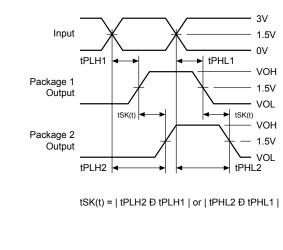

 C_L = Load capacitance: includes jig and probe capacitance. 1.

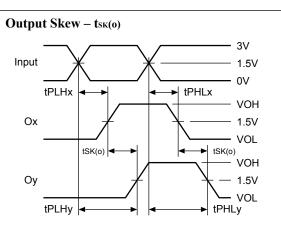
2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

Tests Circuit

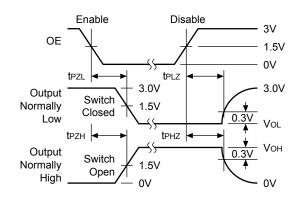

Enable/Disable Time Test Set-Up




Switching Waveforms



Enable and Disable Times


Package Skew – tsk(t)

tSK(o) = | tPLHy Đ tPLHx | or | tPHLy Đ tPHLx |

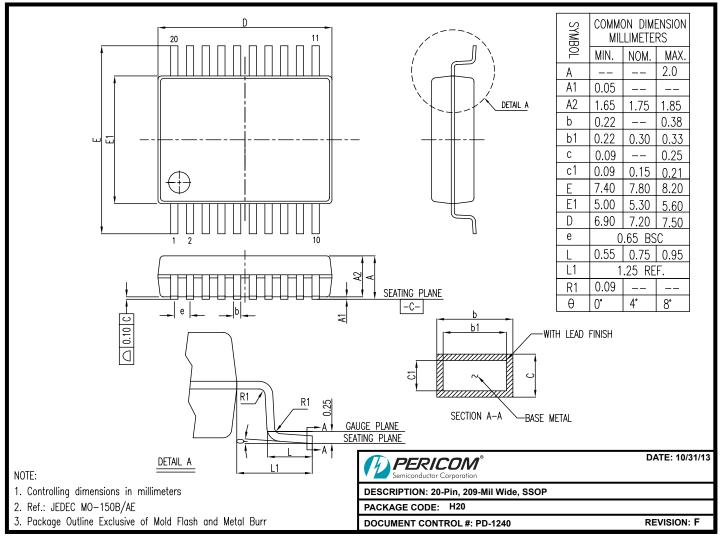
Pulse Skew – tsk(p)

Part Marking

H Package

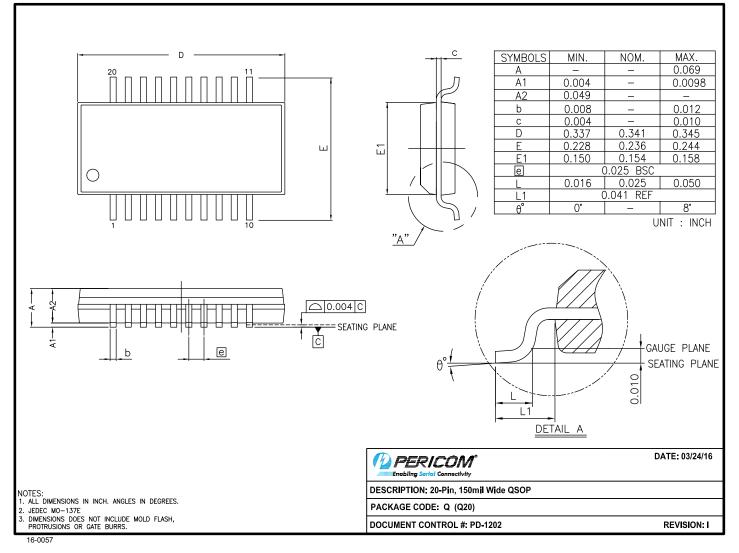
YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Q Package



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 20-SSOP (H)



13-0214

Packaging Mechanical: 20-QSOP (Q)

For latest package info.

 $please \ check: \ http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-pericom-packaging-packaging-pericom-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging-packaging$

Ordering Information

Ordering Code	Package Code	Package Description
PI49FCT3805DHEX	Н	20-pin, 209-mil Wide (SSOP)
PI49FCT3805DQEX	Q	20-pin, 150-mil Wide (QSOP)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

IMPORTANT NOTICE

1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any 3 customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4 Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5 Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/ terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7 While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com