

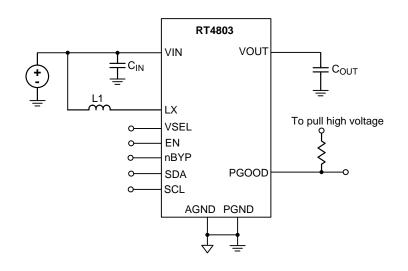
2.5MHz, Synchronous Boost Regulator with Bypass Mode

General Description

The RT4803 allows systems to take advantage of new battery chemistries that can supply significant energy when the battery voltage is lower than the required voltage for system power ICs. By combining built-in power transistors, synchronous rectification, and low supply current; this IC provides a compact solution for systems using advanced Li-Ion battery chemistries.

The RT4803 is a boost regulator designed to provide a minimum output voltage from a single-cell Li-Ion battery, even when the battery voltage is below system minimum. In boost mode, output voltage regulation is guaranteed to a maximum load current of 2A. Quiescent current in Shutdown Mode is less than 1 μ A, which maximizes battery life. The regulator transitions smoothly between Bypass and normal Boost Mode. The device can be forced into Bypass Mode to reduce quiescent current.

The RT4803 is available in the WL-CSP-16B 1.67x1.67 (BSC) package.


Features

- + 4 Few External Components : $0.47 \mu H$ Inductor and 0603 Case Size Input and Output Capacitors
- Input Voltage Range : 1.8V to 5V
- Output Range from 2.85V to 4.4V
 - ▶ VSEL = L 3.3V
 - ▶ VSEL = H 3.55V
- Maximum Continuous Load Current : 2A at V_{IN} > 2.65V Boosting V_{OUT} to 3.35V
- Up to 96% Efficient
- True Bypass Operation when V_{IN} > Target V_{OUT}
- Internal Synchronous Rectifier
- Soft-Start with True Load Disconnect
- Forced Bypass Mode
- V_{SEL} Control to Optimize Target V_{OUT}
- Short-Circuit Protection
- I²C Controlled Interface
- Ultra low Operating Quiescent Current
- Small WL-CSP 16B Package
- Discharge Function

Applications

- Single-Cell Li-Ion, LiFePO4 Smart-Phones or Tablet
- 2.5G/3G/4G Mini-Module Data Cards

Simplified Application Circuit

Ordering Information

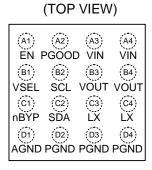
RT4803 📮

```
Package Type
 WSC : WL-CSP-16B 1.67x1.67 (BSC)
```

Note :

Richtek products are :

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.


Marking Information

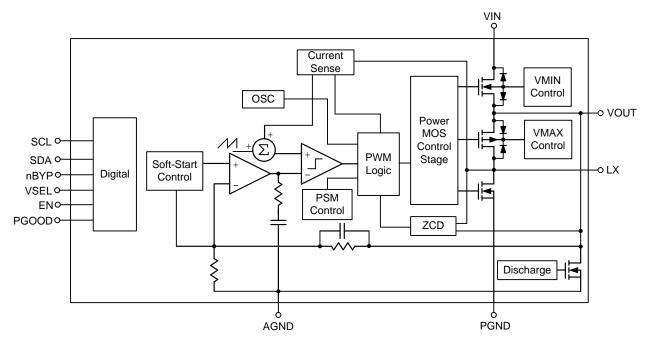
0GW

0G : Product Code W : Date Code

Functional Pin Description

Pin Configuration

WL-CSP-16B 1.67x1.67 (BSC)


Pin No.	Pin Name	Pin Function
A1	EN	Enable. When this pin is HIGH, the circuit is enabled.
A2	PGOOD	Power good. It is a open-drain output. PGOOD pin pulls low automatically if the overload or OTP event occurs.
A3, A4	VIN	Input voltage. Connect to Li-Ion battery input power source.
B1	VSEL	Output voltage select. When boost is running, this pin can be used to select output voltage
B2	SCL	Serial interface clock. (Pull down if I ² C is non-used).
B3, B4	VOUT	Output voltage. Place C _{OUT} as close as possible to the device.
C1	nBYP	Bypass. This pin can be used to activate Forced Bypass Mode. When this pin is LOW, the bypass switches are turned on and the IC is otherwise inactive.
C2	SDA	Serial interface date line. (Pull down if I ² C is non-used).
C3, C4	LX	Switching node. Connect to inductor.
D1	AGND	Analog ground. This is the signal ground reference for the IC. All voltage levels are measured with respect to this pin.
D2, D3, D4	PGND	Power ground. This is the power return for the IC. The C_{OUT} bypass capacitor should be returned with the shortest path possible to these pins.

Copyright © 2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Functional Block Diagram

Operation

The RT4803 combined built-in power transistors, synchronous rectification, and low supply current, it provides a compact solution for system using advanced Li-lon battery chemistries.

In boost mode, output voltage regulation is guaranteed to a maximum load current of 2A. Quiescent current in Shutdown mode is less than $1\mu A$, which maximizes battery life.

Mode		Depiction	Condition		
	LIN 1	Linear startup 1	V _{IN} > V _{OUT}		
LIN	LIN 2	Linear startup 2	VIN > VOUT		
Soft-Start		Boost soft-start	Vout < Vout(min)		
Boos	t	Boost mode	Vout = Vout(min)		
Bypass		Bypass mode	$V_{\text{IN}} > V_{\text{OUT}(\text{MIN})}$		

LIN State

When V_{IN} is rising, it enters the LIN State. There are two parts for the LIN state. It provides maximum current for 1A to charge the C_{OUT} in LIN1, and the other one is for 2A in LIN2. By the way, the EN is pulled high and $V_{IN} > UVLO$.

As the figure shown, if the timeout is over the specification, it will enter the Fault mode.

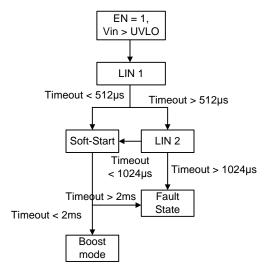


Figure 1. RT4803 State Chart

Startup and Shutdown State

When V_{IN} is rising and through the LIN state, it will enter the Startup state. If EN is pulled low, any function is turned-off in shutdown mode.

Soft-Start State

It starts to switch in Soft-start state. After the LIN state, output voltage is rising with the internal reference voltage.

There is a point, it will go to fault condition, if the large output capacitor is used and the timeout is over 2ms after the soft-start state.

Fault State

As the Figure 1 shown, it will enter to the Fault state as below,

- The timeout of LIN2 is over the $1024\mu s$.
- ► It is over the 2ms when the state changed from Soft-start state to Boost mode.

It will be the high impedance between the input and output when the fault is triggered. A restart will be start after 1ms.

Boost Mode

There are two normal operation modes, one is the Boost mode, and the other one is Bypass mode. In the Boost mode, it provides the power to load by internal synchronous switches after the soft-start state.

Bypass Mode

In Bypass mode, the differential voltage between V_{IN} and V_{OUT} is 250mV. Output voltage will increase when the input voltage is rising after the soft-start state.

Bypass Mode Operation

In automatic mode, it transits from Boost mode to Bypass mode. As the Figure 2 shown, there are three MOSFET (Q1 to Q3). The Q1 & Q2 is for Boost mode, it is used by Q3 for Bypass mode. V_{OUT} will be followed the V_{IN} when V_{IN} is higher than the target output voltage. As the Figure 3 shown, it is transited by bypass MOSFET (Q3). V_{OUT} followed the V_{IN}.

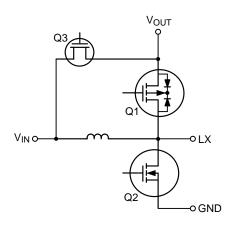


Figure 2. Boost Converter With Bypass Mode

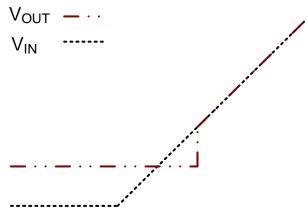


Figure 3. RT4803 mode changed

Force Pass-Through Mode

When EN pulled high and nBYP pulled low. The device is active in the Force pass-through mode. It supplies current is approximately $15\mu A$ typ. From the battery, the device is short circuit protected by a current limit of 4000mA.

VSEL

It is concerned the minimum output voltage at the heavy load condition. There are two output voltage levels (3.3V & 3.55V) in Boost mode and Bypass mode. It can be selected by VSET, so it must not be floating.

PGOOD (Power Good)

Power good is a open-drain input. If it is 0, it stands for fault occurred. The power good provide the information to show the state of the system,

- PGOOD pin show high when the sequence of soft-start is completed.
- Any fault cause PGOOD to be pulled low.
- PGOOD low when PMIS current limit has triggered for OR the die the temperature exceeds 120°C.
 PGOOD is re-asserted when the device cools below to 100°C.

OCP

The converter senses the current signal when the high-side P-MOSFET turns on. As a result, the OCP is cycle by-cycle current limitation. If the OCP occurs, the converter holds off the next on pulse until inductor current drops below the OCP limit.

ΟΤΡ

The converter has an over-temperature protection. When the junction temperature is higher than the thermal shutdown rising threshold, the system will be latched and the output voltage will no longer be regulated until the junction temperature drops under the falling threshold.

EN & nBYP

It is used to select mode. As the table 1 shown, there are four device states.

If the EN pull low, and nBYP pull high/low, the RT4803 is forced in shut-down mode and the quiescent is less than 1 μ A. It works in force pass-through mode, if the EN set high and nBYP set low. When EN and nBYP both pull high, the RT4803 is normal operation and enter automatic mode. There should be a delay time (> 60 μ S) from EN pull high to nBYP pull high to guarantee normal automatic mode operation.

Discharge

The RT4803 features the discharge function to release the output power when the EN pin goes low condition.

RICHTEK

Table 1						
EN input nBYP Input Device State						
0	0/1	The device is shut down and the shut down current is down to $1\mu A$.				
1	0	The device is active in forced pass-through mode. The device supply current is approximately 15µA typ. From the battery. The device is short circuit protected by a current limit of ca. 4000mA.				
1	1	The device is active in auto mode (dc/dc boost, pass-through mode) The device supply current is approximately 65µA typ. from the battery				

Copyright © 2020 Richtek Technology Corporation. All rights reserved. www.richtek.com

Absolute Maximum Ratings (Note 1)	
VIN, VOUT to AGND	–0.2V to 6V
• EN, VSEL, PGOOD, nBYP to AGND	–0.2V to 6V
• LX	(PGND - 0.2V) to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WL-CSP-16B 1.67x1.67 (BSC)	2.09W
Package Thermal Resistance (Note 2)	
WL-CSP-16B 1.67x1.67 (BSC), θ _{JA}	47.7°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
MM (Machine Model)	200V
CDM (Charge Device Model)	1kV

Recommended Operating Conditions (Note 4)

Input Voltage Range	1.8V to 5V
Output Voltage Range	2.85V to 4.4V
Ambient Temperature Range	–40°C to 85°C
Junction Temperature Range	$-40^{\circ}C$ to $125^{\circ}C$

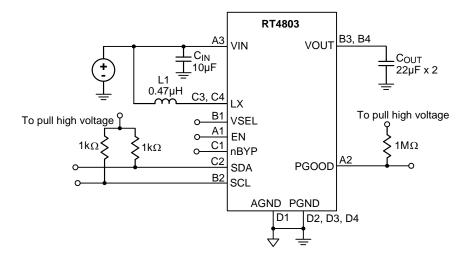
Electrical Characteristics

() /)) /		T. 0500		م ممانیسمط	
(VIN = 3V,	VOUT = 3.55V,	$IA = 25^{\circ}C$	uniess o	inerwise s	pecilied)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VIN Operation Range	Vin		1.8		5	V
VIN Quiescent Current	lq	Auto Bypass Mode, V _{IN} = 3.8V		40	70	μΑ
VIN Quiescent Current	IQ	Boost mode, $I_{LOAD} = 0mA$, Switching, $V_{IN} = 3V$		65	100	μA
VIN Quiescent Current	lq	Force Bypass , V _{IN} = 3.6V		15	25	μΑ
VIN Shutdown Current	I _{SHDN}	EN = 0V, V _{IN} = 3.6V			1	μA
VOUT to VIN Reverse Leakage	I _{LK}	Vout = 5V, EN = nBYP = H, Vin < Vout		0.2	1	μΑ
VOUT Discharge Impedance	R_DIS_OUT	EN = L		80		Ω
Under Voltage Lock Out	VUVLO	V _{IN} Rising		1.6	1.8	V
Under Voltage Lock Out Hysteresis	Vuvlo_hys			200		mV
PGOOD Low	Vpgood	I _{PGOOD} = 5mA			0.4	V
PGOOD Leakage Current	IPGOOD_LK	Vpgood = 5V			1	μA
Logic Level High EN, VSEL, nBYP, SCL, SDA	VIH		1.2			V

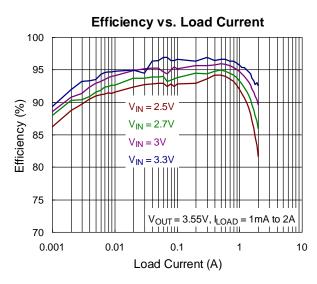
Copyright © 2020 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Logic Level Low EN, VSEL, nBYP, SCL, SDA	VIL				0.4	V
Output Voltage Accuracy	V _{REG}	V _{OUT} – V _{IN} > 100mV, PWM	-2		2	%
Minimum On Time	T _{ON}	$V_{IN} = 3V, V_{OUT} = 3.5V,$ $I_{LOAD} > 1000mA$		80		ns
Maximum Duty Cycle	DMAX		40			%
Switching Frequency	Fsw	$V_{IN} = 2.65V, V_{OUT} = 3.5V,$ $I_{LOAD} = 1000mA$	2	2.5	3	MHz
Boost Valley Current Limit	ICL	V _{IN} = 2.9V	4.4	5	5.6	Α
Soft-Start Input Current Limit	ISS_PK	LIN1		1000		mA
Soft-Start Input Current Limit	ISS_PK	LIN2		2000		mA
Pass Through Mode Current Limit	IBPCL	V _{IN} = 3.2V		4		А
N-channel Boost Switch RDS(ON)	RDSN	V _{IN} = 3.2V, V _{OUT} = 3.5V		60	95	mΩ
P-channel Boost Switch RDS(ON)	R _{DSP}	V _{IN} = 3.2V, V _{OUT} = 3.5V		40	80	mΩ
N-channel Bypass Switch R _{DS(ON)}	R _{DSP_BYP}	V _{IN} = 3.2V, V _{OUT} = 3.5V		40	60	mΩ
Hot Die Trigger Threshold	T _{HD}			100		°C
Hot Die Release Threshold	T _{HDR}			90		°C
Over Temperature Protection	T _{OTP}			160		°C
Over Temperature Protection Hysteresis	T _{OTP_HYS}			20		°C
FAULT Restart Time	T _{RST}			1		ms

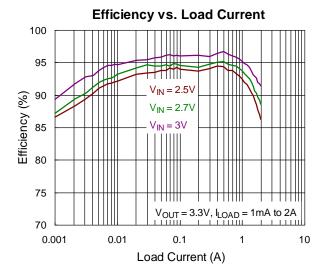

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

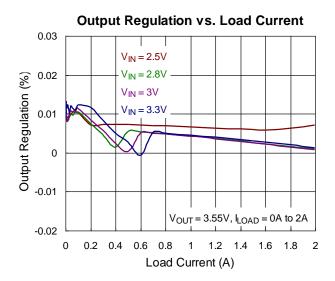
Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7.

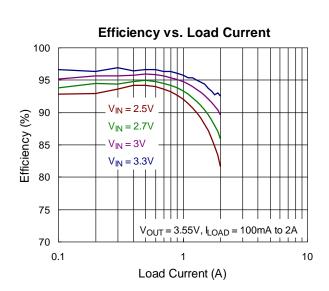
Note 3. Devices are ESD sensitive. Handling precaution recommended.

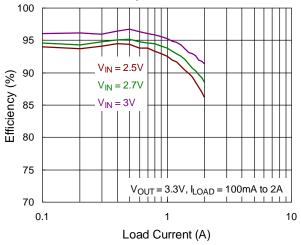

Note 4. The device is not guaranteed to function outside its operating conditions.

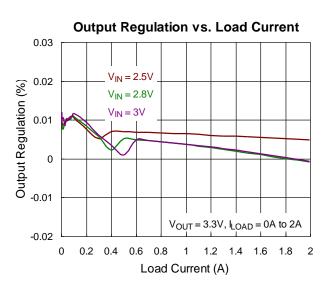
Typical Application Circuit

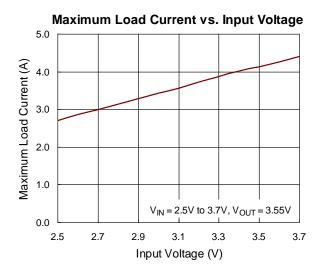


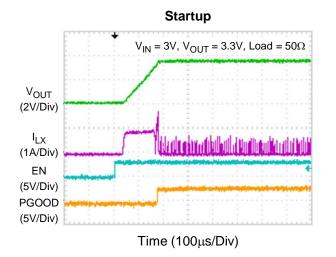

BOM of Test Board

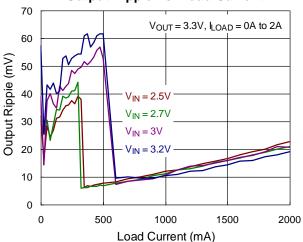

Reference	Description	Manufacturer	Package	Parameter	Тур.	Unit
CIN	10µF/16V/X5R	Taiyo : EMK212ABJ106KG	0805	С	10	μF
COUT	22µF/10V/X5R	Taiyo : LMK212BBJ226MG	0805	С	22	μF
1.4	0.47014 1200/	TOKO : DFE2520F-R47M	2520	L	0.47	μH
L1	0.47µH, ±20%	TORU . DFE2520F-R47M	2520	DCR (Series R)	29	mΩ

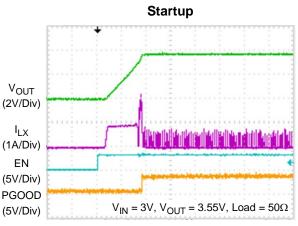

Typical Operating Characteristics

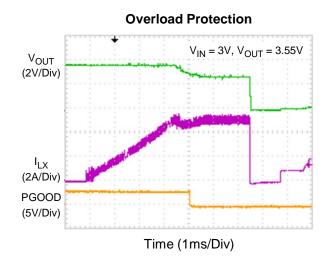




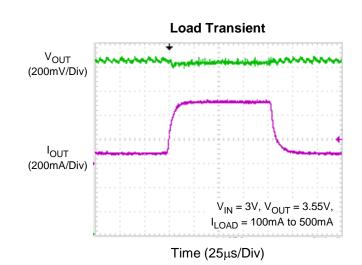


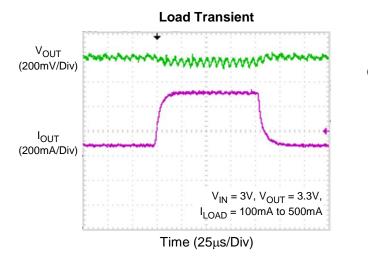

Output Ripple vs. Load Current 70 V_{OUT} = 3.55V, I_{LOAD} = 0A to 2A 60 Output Rippie (mV) V_{IN} = 2.5V 50 $V_{IN} = 2.7V$ 40 V_{IN} = 3V V_{IN} = 3.3V 30 20 10 0 0 500 1000 1500 2000 Load Current (mA)

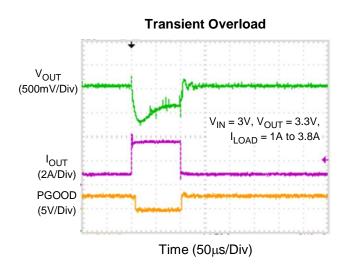



Output Ripple vs. Load Current

RT4803




Time (100µs/Div)



Copyright © 2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Overload Protection V_{OUT} (2V/Div) I_{LX} (2A/Div) PGOOD (5V/Div) V_{IN} = 3V, V_{OUT} = 3.3V Time (1ms/Div)

Copyright © 2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS4803-03

www.richtek.com

VOUT (500mV/Div) V_{IN} = 3V, V_{OUT} = 3.55V, $I_{LOAD} = 1A \text{ to } 3.8A$ IOUT (2A/Div) PGOOD (5V/Div)

Time (50µs/Div)

Transient Overload

Application Information

Enable

The device can be enabled or disabled by the EN pin. When the EN pin is higher than the threshold of logic-high, the device starts operating with soft-start. Once the EN pin is set at low, the device will be shut down. In shutdown mode, the converter stops switching, internal control circuitry is turned off, and the load is disconnected from the input. This also means that the output voltage can drop below the input voltage during shutdown.

Soft-Start State

After the successful completion of the LIN state (V_{OUT} \geq V_{IN} – 300mV).

During Soft-Start state, VOUT is ramped up by Boost internal loop. If VOUT fails to reach target value during the Soft-Start period for more than 2ms, a fault condition is declared.

Output Voltage Setting

User can select the output voltage level by VSEL and I2C. If the VSEL pulled low, the default is 3.3V, and if it pulled high, the default is 3.55V.

The output voltage range is from 2.85V to 4.4V.

Power Save Mode

PSM is the way to improve efficiency at light load.

When the output voltage is lower than a set threshold voltage, the converter will operate in PSM.

It raises the output voltage with several pulses until the loop exits PSM.

Under-Voltage Lockout

The under-voltage lockout circuit prevents the device from operating incorrectly at low input voltages. It prevents the converter from turning on the power switches under undefined conditions and prevents the battery from deep discharge. VIN voltage must be greater than 1.7V to enable the converter. During operation, if VIN voltage drops below 1.6V, the converter is disabled until the supply exceeds the UVLO rising threshold. The RT4803 automatically

restarts if the input voltage recovers to the input voltage UVLO high level.

Thermal Shutdown

The device has a built-in temperature sensor which monitors the internal junction temperature. If the temperature exceeds the threshold, the device stops operating. As soon as the IC temperature has decreased below the threshold with a hysteresis, it starts operating again. The built-in hysteresis is designed to avoid unstable operation at IC temperatures near the over temperature threshold.

Inductor Selection

The recommended nominal inductance value is 0.47μH.

It is recommended to use inductor with dc saturation current ≥ 3500mA

Input Capacitor Selection

At least a 10µF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit for LX. And at least a 1µF ceramic capacitor placed as close as possible to the VIN and GND pins of the IC is recommended.

Output Capacitor Selection

At least 22µF x 2 capacitors is recommended to improve Vout ripple.

Output voltage ripple is inversely proportional to COUT.

Output capacitor is selected according to output ripple which is calculated as :

$$\begin{split} & V_{\text{RIPPLE}(\text{P}-\text{P})} = t_{\text{ON}} \times \frac{I_{\text{LOAD}}}{C_{\text{OUT}}} \\ & \text{and} \\ & t_{\text{ON}} = t_{\text{SW}} \times D = t_{\text{SW}} \times \left(1 - \frac{V_{\text{IN}}}{V_{\text{OUT}}}\right) \\ & \text{therefore :} \\ & C_{\text{OUT}} = t_{\text{SW}} \times \left(1 - \frac{V_{\text{IN}}}{V_{\text{OUT}}}\right) \times \frac{I_{\text{LOAD}}}{V_{\text{RIPPLE}(\text{P}-\text{P})}} \\ & \text{and} \\ & t_{\text{SW}} = \frac{1}{f_{\text{SW}}} \end{split}$$

Copyright © 2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS4803-03

The maximum V_{RIPPLE} occurs when V_{IN} is at minimum and I_{LOAD} is at maximum.

Output Discharge Function

With the EN pin set to low, the VOUT pin is internally connected to GND by an internal discharge N-MOSFET switch.

This feature prevents residual charge voltages on capacitor connected to VOUT pins, which may impact proper power up of the system.

Current Limit

The RT4803 employs a valley-current limit detection scheme to sense inductor current during the off-time. When the loading current is increased such that the loading is above the valley current limit threshold, the off-time is increased until the current is decreased to valley-current threshold. Next on-time begins after current is decreased to valley-current threshold. On-time is decreased to valley-current threshold. On-time is decreases when further loading current increase. As the following figure shown, the current limit function is implemented by the scheme.

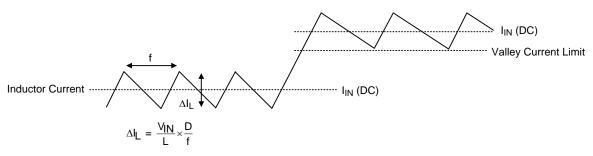


Figure 4. Inductor Currents In Current Limit Operation

Copyright © 2020 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS4803-03
 January
 2020

Register Table Lists [Slave address = 1110101 (0x75)]

Name	Address	Description
CONFIG	0x01	MODE control & Spread modulation control
VOUTFLOOR	0x02	Output Voltage Selection
VOUTROOF	0x03	Output Voltage Selection
ILIMSET	0x04	Set current limit & Softstart current limit
STATUS	0x05	Read IC status

I²C Interface

The RT4803 I²C slave address is 1110101 (7bits). The I²C interface supports fast mode (bit rate up to 400kb/s). The write or read bit stream (N \ge 1) is shown below :

Read N bytes

S Slave Ad	dress 0	A	Register Address	A	Sr	Slave Address	1		A MSB	Data 1	LSB A	
	R/W -		Assume Address = m			Data for Addre	ess = m					-
			MSB Data 2	LSE	3 A -	MSB	[Dat	ta N	LSB A P		
			Data for Address = r	n+1		Data for	Addres	SS	= m + N -	1		
Write N bytes												
S Slave Ad	dress 0	А	Register Address	А	MSB	Data 1	LSB		A MSB	Data 2	LSB A	Ь
	R/₩ 📥		Assume Address = m		Dat	a for Address = m	Da	ata	for Addre	ss = m + 1		
						Data for Addr			ta N	LSB A P		
						Data for / taal	000 - 11	• •				
Driven by Mast	er, 🗌 Driven b	oy Sla	ave (RT4803), P Stop	S	Start,	Sr Repeat Start						

RICHT	EK
-------	----

Offset 0x01					CONFIG			
Bits	7	6	5	4	3	2	1	0
Name	RESET	ENABLE[1:0] RESERVED			PG Config	SSFM	MODE_C	TRL[1:0]
Reset	0	0	0	0	1	0	0	1
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Off	set 0x02	VOUTFLOOR						
Bits	7	6	5	4	3	2	1	0
Name	RESERVED	RESERVED	RESERVED			VOUT[4: 0]		
Reset	0	0	0	0	1	0	0	1
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Off	set 0x03	VOUTROOF						
Bits	7	6	5	4	3	2	1	0
Name	RESERVED	RESERVED	RESERVED			VOUT[4: 0]		
Reset	0	0	0	0	1	1	1	0
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Off	set 0x04				ILIMSET			
Bits	7	6	5	4	3	2	1	0
Name	RESERVED	RESERVED	ILIM_OFF	SOFT_START		ILIN	<i>I</i> [3:0]	
Reset	0	0	0	1	1	1	1	1
Туре	RW	RW	RW	RW	RW	RW	RW	RW
Off	set 0x05				STATUS			
Bits	7	6	5	4	3	2	1	0
Name	TSD	HOTDIE	DCDCMODE	OPMODE	ILIMPT	ILIMBST	FAULT	PGOOD
Reset	0	0	0	0	0	0	0	0
Туре	RO	RO	RO	RO	RO	RO	RO	RO

Copyright © 2020 Richtek Technology Corporation. All rights reserved. www.richtek.com

RT4803)
---------------	---

Name		Function	Addr		
CONFIG		MODE control & Spread modulation control	0x01		
Bit	Mode	Name	Reset	Description	
7	R/W	RESET	0	0 : Disable ID detection function 1 : Enable ID detection function	
[6 : 5]	R/W	ENABLE[1 : 0]	0	 00 : Device operation follows hardware control signal (refer to table 1) 01 : Device operation in auto transition mode (boost/bypass) regardless of the nBYP control signal (EN = 1) 10 : Device is forced in pass-through mode regardless of the nBYP control signal (EN = 1) 11 : Device is in shutdown mode. The output voltage is reduced to a minimum value (V_{IN} - V_{OUT} ≤ 3.6V) regardless of the nBYP control signal (EN = 1) 	
4	R/W	Reserved	0		
3	R/W	PG Config	1	 0 : PG pin = H, Power good indication PG pin = L, IC shut down, it needs retoggle this pin to restart V_{OUT} 1 : PG pin is for power good indication 	
2	R/W	SSFM	0	0 : Spread spectrum modulation is disabled. 1 : Spread spectrum modulation is enabled in PWM mode.	
[1 : 0]	R/W	MODE_CTRL[1:0]	01	 00 : Device operation follows hardware control signal. 01 : PFM with automatic transition into PWM operation. 10 : Forced PWM operation. 11 : PFM with automatic transition into PWM operation (VSEL = L), forced PWM operation (VSEL = H). 	
Na	ime	Function	Addr		
VOUT	FLOOR	Output Voltage Selection	0x02		
Bit	Mode	Name	Reset	Description	
[7 : 5]	R/W	Reserved	000		
[4 : 0]	R/W	VOUT[4 : 0]	01001	00000 : V _{OUT} = 2.85V 00001 : V _{OUT} = 2.9V 00010 : V _{OUT} = 2.95V 00011 : V _{OUT} = 3V 1 00100 : V _{OUT} = 3.05V 01001 : V _{OUT} = 3.3V (default) 11111 : V _{OUT} = 4.4V	

Copyright © 2020 Richtek Technology Corporation. All rights reserved.

Name		Function	Addr		
VOUTROOF		Output Voltage Selection	0x03		
Bit	Mode	Name	Reset	Description	
[7 : 5]	R/W	Reserved	000		
[4 : 0]	R/W	VOUT[4 : 0]	01110	$\begin{array}{l} 00000: V_{OUT} = 2.85V\\ 00001: V_{OUT} = 2.9V\\ 00010: V_{OUT} = 2.95V\\ 00011: V_{OUT} = 3V\\ 00100: V_{OUT} = 3.05V\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
Na	me	Function	Addr		
ILIN	ISET	Set current limit & Soft-start current limit	0x04		
Bit	Mode	Name	Reset	Description	
[7:6]	R/W	Reserved	00		
5	R/W	ILIM_OFF	0	0 : Current Limit Enabled 1 : Current Limit Disabled	
4	R/W	Soft-Start	1	 0 : Boost soft-start current is limited per ILIM bit settings 1 : Boost soft-start current is limited to ca. 1250mA inductor valley current 	
[3 : 0]	R/W	ILIM[3 : 0]	1111	1000 : 1500mA 1001 : 2000mA 1010 : 2500mA 1011 : 3000mA 1100 : 3500mA 1101 : 4000mA 1110 : 4500mA 1111 : 5000mA (default)	

RT4803)
---------------	---

Name		Function	Addr		
STATUS		Read IC status	0x05		
Bit	Mode	Name	Reset	Description	
7	R	TSD	0	0 : Normal operation. 1 : Thermal shutdown tripped. The flag is reset after readout.	
6	R	HOTDIE	0	0 : TJ < 115°C. 1 : TJ > 115°C.	
5	R	DCDCMODE	0	0 : Device operates in PFM mode. 1 : Device operates in PWM mode.	
4	R	OPMODE	0	0 : Device operates in pass-through mode. 1 : Device operates in dc/dc mode.	
3	R	ILIMPT	0	0 : Normal operation.1 : Indicates that the bypass FET current limit has triggered. This flag is reset after readout.	
2	R	ILIMBST	0	 0 : Normal operation. 1 : Indicates that the average input current limit has triggered fo 1.5ms in dc/dc boost mode. This flag is reset after readout. 	
1	R	FAULT	0	0 : Normal operation.1 : Indicates that a fault condition has occurred. This flag is reset after readout.	
0	R	PGOOD	0	0 : Indicates the output voltage is out of regulation.1 : Indicates the output voltage is within its nominal range. This bit is set if the converter is forced in pass-through mode.	

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

 $P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WL-CSP-16B 1.67x1.67 (BSC) package, the thermal resistance, θ_{JA} , is 47.7°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25$ °C can be calculated by the following formula :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (47.7^{\circ}C/W) = 2.09W$ for WL-CSP-16B 1.67x1.67 (BSC) package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 5 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 5. Derating Curve of Maximum Power Dissipation

Layout Consideration

The PCB layout is an important step to maintain the high performance of the RT4803.

Both the high current and the fast switching nodes demand full attention to the PCB layout to save the robustness of the RT4803 through the PCB layout. Improper layout might show the symptoms of poor line or load regulation, ground and output voltage shifts, stability issues, unsatisfying EMI behavior or worsened efficiency. For the best performance of the RT4803, the following PCB layout guidelines must be strictly followed.

- Place the input and output capacitors as close as possible to the input and output pins respectively for good filtering.
- ► For thermal consider, it needed to maximize the pure area for the power stage area besides the LX.

Copyright © 2020 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS4803-03
 January
 2020

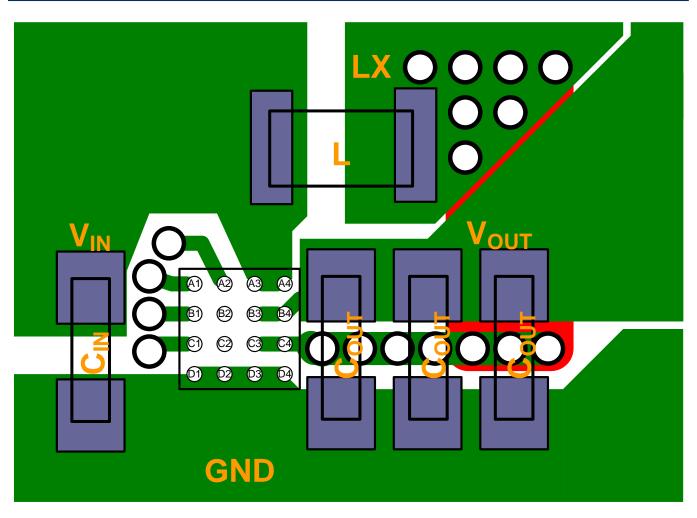
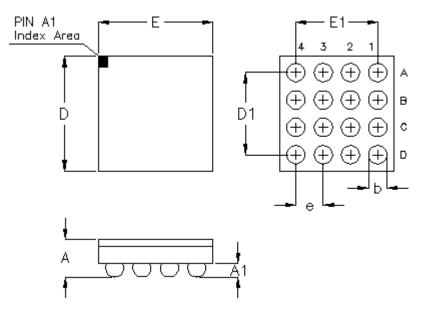



Figure 6. PCB Layout Guide

Outline Dimension

Symbol	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Мах	Min	Мах	
A	0.500	0.600	0.020	0.024	
A1	0.170	0.230	0.007	0.009	
b	0.240	0.300	0.009	0.012	
D	1.620	1.720	0.064	0.068	
D1	1.2	200	0.047		
E	1.620	1.720	0.064	0.068	
E1	1.2	200	0.047		
е	0.4	100	0.016		

WL-CSP-16B 1.67x1.67 (BSC)

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2020 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.