

NPTB00025

Rev. V1

Features

- Optimized for Broadband Operation (DC 4 GHz)
- 25 W P3dB CW Narrowband Power
- 10 W P3dB CW Broadband Power (0.05 1 GHz)
- Characterized for Operation up to 32 V
- 100% RF Tested
- Thermally-Enhanced Surface Mount Package
- · High Reliability Gold Metallization Process
- Subject to EAR99 Export Control
- RoHS* Compliant

Applications

- Defense Communications
- Land Mobile Radio
- Avionics
- Wireless Infrastructure
- ISM
- VHF/UHF/L/S-Band Radar

Description

The NPTB00025 GaN HEMT is a power transistor optimized for DC - 4 GHz operation. This device supports CW, pulsed, and linear operation with output power levels to 25 W. This transistor is assembled in an industry standard surface mount plastic package.

Ordering Information

Part Number	Package
NPTB00025B	30 slot tray

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	RF _{IN} / V _G	RF Input / Gate
2	RF _{OUT} / V _D	RF Output / Drain
3	Flange ¹	Ground / Source

^{1.} The Flange must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

 $^{^{\}star}$ Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V1

Typical CW RF Specifications: (measured in a test fixture)

Freq. = 3 GHz, V_{DS} = 28 V, I_{DQ} = 225 mA, T_{C} = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Average Output Power	3 dB Compression 1 dB Compression	P _{3dB} P _{1dB}	22 18	25 21	_	W
Small Signal Gain	_	Gss	12.5	13.5	_	dB
Drain Efficiency	3 dB Compression	ŋ	60	65	_	%
Output Mismatch Stress	VSWR = 10:1. all phase angles, $P_{OUT} = P_{SAT}$	Ψ	No performance degradation after test			

DC Electrical Characteristics: T_c = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Off Characteristics						
Drain-Source Breakdown Voltage	V _{GS} = -8 V, I _D = 8 mA	V _{BDS}	100	_	_	V
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 60 V	I _{DLK}	_	1	5	mA
On Characteristics						
Gate Threshold Voltage	V _{DS} = 28 V, I _D = 8 mA	V _T	-2.3	-1.8	-1.3	V
Gate Quiescent Voltage	V _{DS} = 28 V, I _D = 225 mA	V_{GSQ}	-2.0	-1.5	-1.0	V
On Resistance	V _{GS} = 2 V, I _D = 60 mA	R _{on}	_	0.44	0.55	Ω
Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs 0.2% Duty Cycle, V_{GS} = 2 V	I _D	4.9	5.4	_	Α

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

NPTB00025

Rev. V1

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Maximum	
Drain Source Voltage, V_{DS}	100 V	
Gate Source Voltage, V _{GS}	-10 to 3 V	
Gate Current, I _G	40 mA	
Total Device Power Dissipation (derated above +25°C)	33 W	
Junction Temperature, T _J	+200°C	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-65°C to +150°C	

^{2.} Exceeding any one or combination of these limits may cause permanent damage to this device.

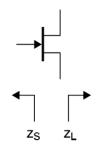
Thermal Characteristics⁵

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V _{DS} = 28 V, T _J = 200°C	$R_{\theta JC}$	5.25	°C/W

^{5.} Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

^{3.} MACOM does not recommend sustained operation near these survivability limits.

^{4.} Operating at nominal conditions with $T_J \le 200$ °C will ensure MTTF > 1 x 10^6 hours.


NPTB00025 Rev. V1

Load-Pull Data, Reference Plane at Device Leads: V_{DS} = 28 V, I_{DQ} = 225 mA, T_C = 25°C

Table 1: Optimum Impedance Characteristics for CW Gain, Drain Efficiency, and Output Power Performance

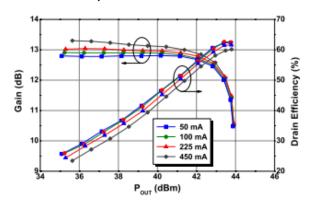
Frequency (MHz)	Z _s (Ω)	Z _L (Ω)
800	3.9 + j5.9	12.2 + j6.1
2000	3.7 - j5.1	7.7 + j1.1
3000	4.7 - j15.3	7.4 - j5.8

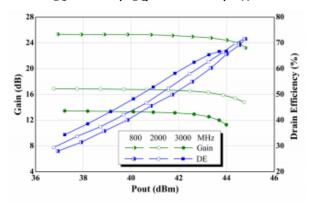
Impedance Reference

ZS is the source impedance presented to the device.

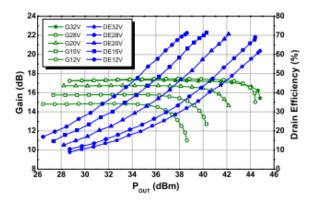
Z_L is the load impedance presented to the device.

Z_S and Z_L vs. Frequency




Figure 1 - Optimum Impedance Characteristics for CW Performance, V_{DS} = 28 V, I_{DQ} = 225 mA

Rev. V1


Load-Pull Data, Reference Plane at Device Leads: V_{DS} = 28 V, I_{DQ} = 225 mA, T_A = 25°C

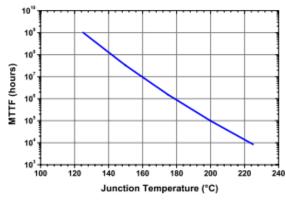

Figure 2 - Typical CW Performance, Over Current, Frequency = 3000 MHz

Figure 3 - Typical CW Performance, Over Frequency

Figure 4 - Typical CW Performance Over Voltage, Impedances Held Constant, Frequency = 1800 MHz

Typical Device Characteristics: V_{DS} = 28 V, I_{DQ} = 225 mA, T_A = 25°C

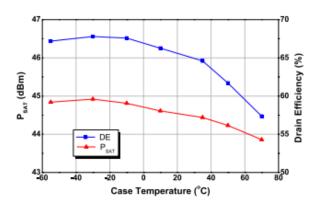


Figure 5 - MTTF of NRF1 Devices as a Function of Junction Temperature

Figure 6 - Typical CW Performance in test fixture, Frequency = 3000 MHz

Rev. V1

NPTB00025 3000 MHz, CW Production Test Fixture

 $V_{DS} = 28 \text{ V}, I_{DQ} = 225 \text{ mA}, T_A = 25^{\circ}\text{C}$

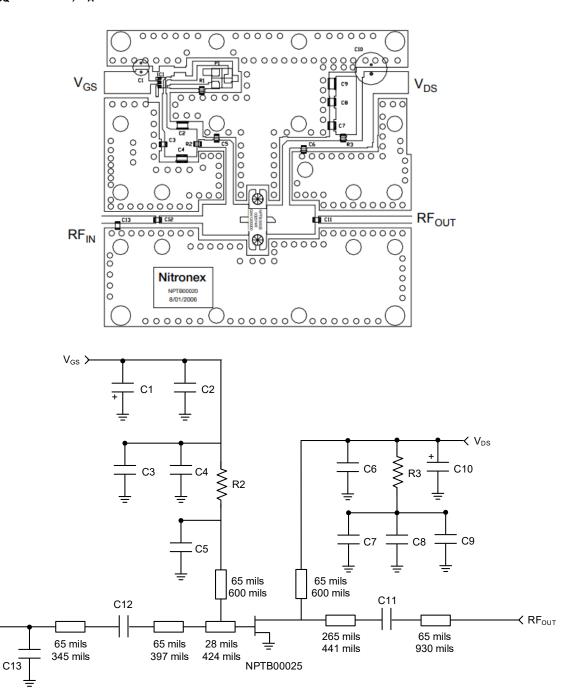
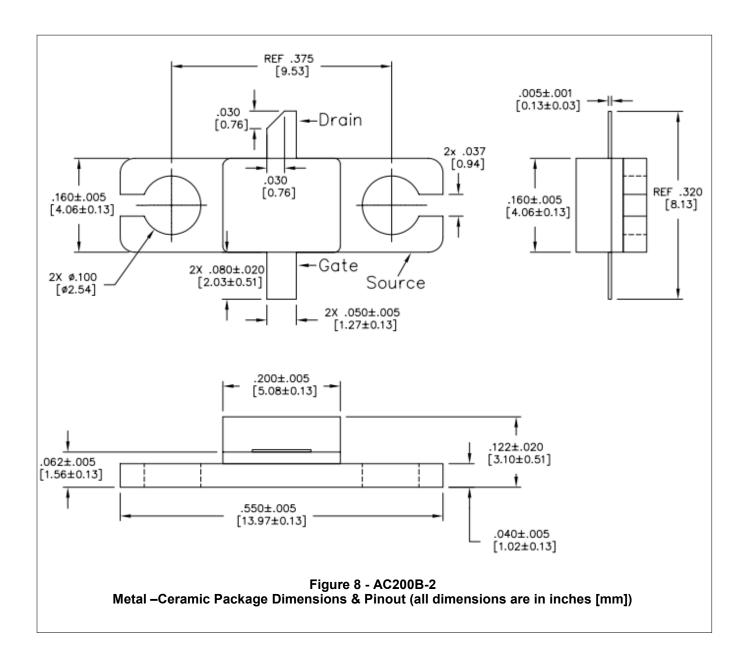


Figure 7 - NPTB00025 3000 MHz Test Fixture and Schematic

NPTB00025

Rev. V1


Parts list

Reference	Value	Tolerance	Manufacturer	Part Number
C1	150 µF	20%	Nichicon	UPW1C151MED
C10	270 µF	20%	United Chemi-Con	ELXY630ELL271MK25S
C2, C8	0.1 μF	10%	Kemet	C1206C104K1RACTU
C3, C7	0.01 μF	10%	AVX	12061C103KAT2A
C4, C9	1 μF	10%	Panasonic	ECJ-5YB2A105M
C5, C6, C11, C12	5.6 pF	±0.1 pF	ATC	ATC600F5R6B
C13	1.2 pF	±0.1 pF	ATC	ATC600F1R2AT
R2	49.9 Ω	1%	Panasonic	ERJ-6ENF49R9V
R3	0.33 Ω	1%	Panasonic	ERJ-6RQFR33V
PCB	Taconic, RF35, ε_r =3.5, t = 30 mils			

Rev. V1

Outline Drawing

NPTB00025

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.