Photologic® Optically Coupled Isolator ## OPI125, OPI126, OPI128 #### Features: - Multiple output options - 15 kV dc input-to-output isolation voltage - Direct TTL/STTL interface - High noise immunity - Data rates to 250 KBit/s - Hermetically sealed - TX-TXV process available - UL File No. E 58730* #### **Description:** Each **OPI125**, **OPI126**, and **OPI128** consists of an optically coupled isolator with a gallium arsenide infrared emitting diode coupled to a monolithic integrated circuit. This circuit incorporates a photodiode, a linear amplifier and a Schmitt trigger on a single silicon chip. For maximum long-term stability, both the diode and the Photologic® sensor are hermetically sealed in separate packages and then mounted in a high dielectric plastic housing. These devices feature TTL/LSTTL compatible logic level output that can drive up to 8 TTL loads directly without additional circuitry. Also featured are medium-speed data rates to 250 KBit/s, with typical rise and fall times of 70 nanoseconds. *UL recognition is for 15kV dc to 100° C. TX and TXV processing is available. For more information, contact your local representative or OPTEK. ### **Applications:** - High voltage isolation between input and output - Electrical isolation in dirty environments - Industrial equipment - Medical equipment - Office equipment | | Ordering Information | | | | | | | | | | |----------------|------------------------|---|----|---|----------------------------------|-----------------------------------|--------------------|-----------------|--|--| | Part
Number | LED Peak
Wavelength | Sensor Photologic® Isolation Voltage (,000) | | t _{PLH} / t _{PHL}
Typ (μs) | I _F (mA)
Typ / Max | V _{CE}
(Volts)
Max | (Volts) Length / * | | | | | OPI125 | 890nm | Totem Pole | | | | 35.0 | 0.40" /
0.75" | 0.75"
[19mm] | | | | OPI126 | 935nm | Open Collector | 15 | 5/5 | 7.5 / 25 | | | | | | | OPI128 | 890nm | Inverted Open
Collector | 15 | 5,5 | 7.5 / 25 | | | | | | | Pin # | LED | Pin # | Photologic® | | | | |-------|---------|-------|-------------|---|------------------------------------|---| | 1 | Anode | 3 | Output | | | | | 2 | Cathode | 4 | Vcc | | | | | | | 5 | Ground | [22.85] | * See | [10.16] | | Rol | b
Hs | | | 8.12
7.61
.320
.300 DIMENSIONS ARE IN: | Table Table [MILLIMETERS] INCHES | .400 [2.32] [1.27] .050 NOM .091 .050 [0.44±0.13] .017±.005 [1.27] .050 | Rev E.1 06/2016 Page 1 # **Photologic® Optically Coupled Isolator** OPI125, OPI126, OPI128 #### **OPI125 - Totem Pole Output** #### **OPI126 - Open Collector Output** ### **OPI128 - Inverted Open Collector Output** #### **Absolute Maximum Ratings** ($T_{\Delta} = 25^{\circ}$ C unless otherwise noted) | Absolute Maximum Ratings (14 - 25 Cumess otherwise noted) | | |--|-------------------| | Storage Temperature | -55° C to +100° C | | Operating Temperature | -55° C to +100° C | | Supply Voltage, V _{CC} (not to exceed 3 seconds) | +10 V | | Input-to-Output Isolation Voltage ⁽¹⁾⁽²⁾ | ± 15 kVDC | | Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron) ⁽³⁾ | 260° C | | Input Diode | | | Forward DC Current | 25 mA | | Reverse DC Voltage | 2 V | | Power Dissipation ⁽⁴⁾ | 200 mW | | Output Photosensor | | | Output Photologic® Power Dissipation ⁽⁵⁾ | 120 mW | | Duration of Output Short to VCC or Ground (OPI125, OPI127) | 1.00 second | | Duration of Output Short to VCC (OPI126, OPI128) | 1.00 second | | Voltage at Output Lead (OPI126, OPI128) | 35 V | #### Notes: - (1) Measured with input and output leads shorted. - (2) UL recognition is for 15kV dc for one minute - (3) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. - (4) Derate linearly 1.33 mW/° C above 25° C. - (5) Derate linearly 3.40 mW/° C above 90° C. #### General Note # **Photologic® Optically Coupled Isolator** OPI125, OPI126, OPI128 ### **Electrical Characteristics** ($T_A = -40^{\circ} \text{ C to } +85^{\circ} \text{ C unless otherwise noted}$) | SYMBOL | PARAMETER | MIN | TYP | MAX | UNITS | TEST CONDITIONS | | |--|--|------------|-------------|----------------------|-------|--|--| | Diode Input (See OP130 and OP230 for additional information - for reference only) | | | | | | | | | V _F | Forward Voltage | | - | 1.5 | V | I _F = 10 mA, T _A = 25° C | | | I _R | Reverse Current | | - | 100 | μΑ | V _R = 2 V, T _A = 25° C | | | I _F (+) | LED Positive-Going threshold Current | | - | 7.5 | mA | V _{CC} = 5 V, T _A = 25° C | | | I _F (+)/I _F (-) | /I _F (-) Hysteresis Ratio | | 2.0 | - | - | - | | | Photologic® Output (See OP800 and OP801 for additional information - for reference only) | | | | | | | | | V _{CC} | Operating Supply Voltage | | - | 5.5 | V | - | | | I _{cc} | Supply Current | - | - | 20 | mA | V _{CC} = 5.5 V, I _F = 0 or 7.5 mA | | | V _{OL} | Low Level Output Voltage OPI125 OPI126 OPI128 | | -
-
- | 0.40
0.40
0.40 | V | $V_{CC} = 4.5 \text{ V}, I_{OL} = 13 \text{ mA}, I_F = 0 \text{ mA}$ $V_{CC} = 4.5 \text{ V}, I_{OL} = 13 \text{ mA}, I_F = 0 \text{ mA}$ $V_{CC} = 4.5 \text{ V}, I_{OL} = 13 \text{ mA}, I_F = 7.5 \text{ mA}$ | | | V _{OH} | High Level Output Voltage
OPI125 | 2.4
2.4 | - | - | V | V_{CC} = 4.5 V, I_{OH} = -800 μ A, I_F = 7.5 mA V_{CC} = 4.5 V, I_{OH} = -800 μ A, I_F = 0 mA | | | I _{os} | Short Circuit Output Current
OPI125 | | - | -120 | mA | V _{CC} = 5.5 V, I _F = 7.5mA, Output = GND | | | I _{OH} | High Level Output Current OPI126 OPI128 | | | 100
100 | μА | V _{CC} = 4.5 V, V _{OH} = 30 V, I _F = 7.5 mA
V _{CC} = 4.5 V, V _{OH} = 30 V, I _F = 0 mA | | | | Output Rise Time, Output Fall Time OPI125 Output Rise Time, Output Fall Time OPI126, OPI128 | | 100 | - | | V _{CC} = 5 V, T _A = 25° C,
I _F = 0 or 10 mA, f = 10 kHz,
D.C. = 50%, RL = 8 TTL loads | | | t _r , t _f | | | 100 | - | ns | $V_{CC} = 5 \text{ V}, T_A = 25^{\circ} \text{ C},$ $I_F = 0 \text{ or } 10 \text{ mA}, f = 10 \text{ kHz},$ D.C. = 50%, RL = 360 Ω | | | t _{PLH} , t _{PHL} | Propagation Delay, Low-High, High-Low OPI125 Propagation Delay, Low-High, High-Low OPI126, OPI128 | | 5 | - | μs | V _{CC} = 5 V, T _A = 25° C,
I _F = 0 or 10 mA, f = 10 kHz,
D.C. = 50%, RL = 8 TTL loads | | | | | | 5 | - | | V _{CC} = 5 V, T _A = 25° C,
I _F = 0 or 10 mA, f = 10 kHz,
D.C. = 50%, RL = 360 Ω | |