

CECE

EL

A AVAN

The Leading Edge in EMI Shielding Technology

SHIELDING SELECTION CONSIDERATIONS

- Consider these important factors in the selection of appropriate shielding products for your design:
- **Operating Frequency** n
- Materials Compatibility Load/Forces n
- Corrosive Considerations
- Commercial or Military n
- Worldwide Compliance n
 - Operating Environment
- n Cycle Life
- Cost n
- Material Thickness/Alloy n
- Attenuation Performance n
- Fastening/Mounting n Methods
- n Storage Environment
- n Nuclear, Biological, Chemical (NBC)
- Shielding/Grounding/Other n
- **Electrical Requirements** n
- Space/Weight Considerations n
- Product Safety n
- n Recyclability

QUICK REFERENC	CE PRODUCT SELEC	CTION CHART					
PARAMETERS	TechSIL ELASTOMER SHEETS	TechSIL ELASTOMER GASKETS	CuBe METAL GASKETS	FSG FABRIC SHIELDING GASKETS	CFS CONDUCTIVE FOAM	TechMESH KNITTED WIRE	TechMESH COMBO STRIP
High Cycling	Good	Good	Excellent	Very Good	Fair	Good	Good
Wiping Applications	N/A	Good	Excellent	Good	N/A	Fair	Fair
Dust Protection	Excellent	Excellent	N/A	Very Good	Very Good	Fair	Excellent
Moisture Protection	Excellent	Excellent	N/A	N/A	N/A	N/A	Excellent
Deflection %	10-20%	15-50%	15-85%	30-50%	30-60%	20-50%	20-50%
Design Flexibility	Excellent	Excellent	Very Good	Excellent	Excellent	Good	Very Good
Finish Options	Very Good	Very Good	Excellent	Good	Fair	Good	Good
I/O Applications	Excellent	Fair	Fair	Very Good	Excellent	Fair	Fair
Shield Effectiveness	Excellent	Excellent	Excellent	Excellent	Very Good	Excellent	Excellent
Tooling/NRE	Low	None	None	None/Low	Low	None	Low
Part Cost	SSS	SSS	SSS	\$	SS	\$	SS
Lead Times	Very Good	Very Good	Excellent	Excellent	Very Good	Very Good	Good

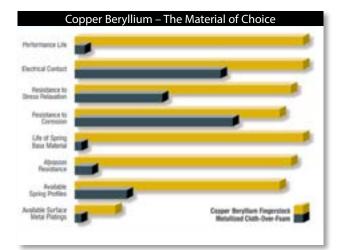
Notice:

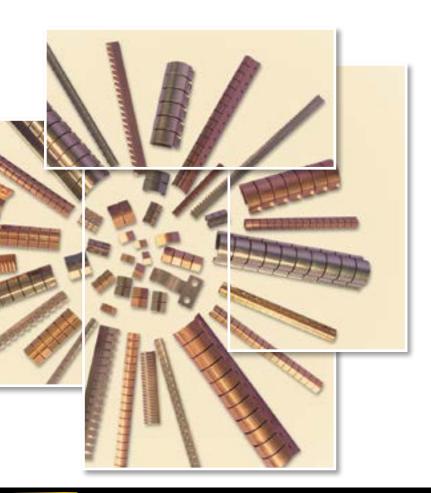
Leader Tech cannot guarantee that the same test data as described herein will be obtained. Thus, it is recommended that each user make their own tests to confirm laboratory test data and determine suitability of products for their particular application.

The products described in this catalog shall be standard quality, however, the products in this catalog are sold without warranty of fitness for a particular purpose, either expressed or implied, except to the extent expressly stated on Leader Tech's quotation or order acknowledgment. Leader Tech does not warrant that devices incorporating one or more of the products described in this catalog will be free of conflict with existing or future patents of third parties. All risks of lack of fitness, patent infringement, and the like are assumed by the user. Furthermore, nothing contained herein shall be construed as a recommendation to make, use, or sell any product or process in conflict with existing or future patents.

TABLE OF CONTENTS

4	Application of Fingerstock Gaskets	
5	Compression/Deflection Performance and EMI Shielding Effectiveness	
6	Ordering Information & Adhesive Mounting Instructions	
	Metals Galvanic Compatibility Chart	
8	BeCu Low Profile Series	Mar
8	BeCu PCI Series	2
9	BeCu Adhesive Mount Series	
9	BeCu Dome Top Series	J'
10	BeCu Slot Mount Series	The
12	BeCu Folded Series	ALT.
1 4	BeCu Twist Series	
16	BeCu Clip-On Series	The second
18	BeCu Grounding Series	1 See Bar
19	BeCu Contact Series	Ann
22	Metal D-Subs	
23	Precision Metal Stampings	
<mark>2</mark> 4	TechSIL Conductive Elastomers	10
<mark>2</mark> 5	TechSIL Oriented Wire	TE
<mark>2</mark> 6	TechMESH Knitted Wire	210
27	TechMESH Elastomer Core Wire	
<mark>_28</mark>	TechMESH Combo Strip	
29	TechMESH Tape	
30	FSG Fabric Shielding Gaskets	
35	Shielding Fabrics & Conductive Tapes	
36	CFS Conductive Foam Shielding Material	8
37	Custom and Die-Cut Shielding Gaskets	
39	Products and Literature	




APPLICATION OF FINGERSTOCK GASKETS

EMI designers know and trust the consistent performance of Fingerstock (CuBe) gaskets. To date, CuBe yields the best electrical spring contact available in this industry. The copper beryllium mills have well established techniques and for decades have produced CuBe alloys per ASTM, SAE, JIS, and DIN specifications.

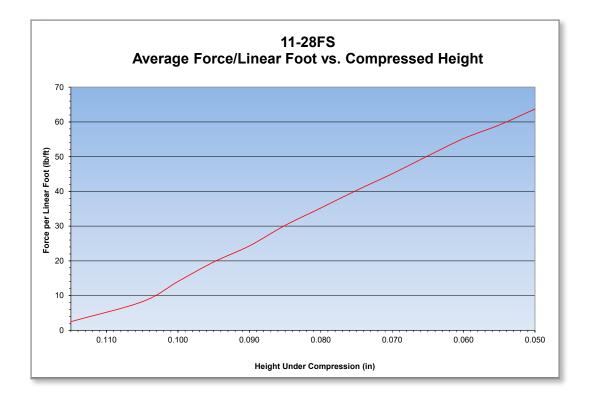
Leader Tech uses only proven technology in creating copper beryllium springs, contacts and gaskets. Beginning with Alloy 25 (1/4 hard) BeCu, we stamp, form, and post heat-treat to a hardness of 340 to 390 DPH. This process is preferred in the EMI shielding industry because it has proven to produce the best electrical spring contacts. Leader Tech CuBe EMI shielding gaskets are the most reliable in the industry.

Leader Tech manufactures a wide variety of standard styles and sizes of CuBe gaskets. These gaskets operate in spaces from .010 inches up to .410 inches. Using CuBe materials as thin as .002 inch, we also offer many styles as soft gaskets that provide the low compression force needed in many applications. Leader Tech also designs and manufactures custom spring contacts and gaskets.

FINGERSTOCK GASKETS DO TWO THINGS VERY WELL:

- 1. Their mechanical spring characteristics far surpass all other gaskets in the industry.
- 2. They offer the highest EMI shielding effectiveness.

Leader Tech has been designing and manufacturing Fingerstock Gaskets since the early days of the computer and electronics industries. We combine these years of manufacturing and EMI experience with one key ingredient – the needs of the customer.


Our innovative Fingerstock Gasket designs are a direct result of our experience and customer input. Our Compact PCI line of EMI Gaskets is an example of a design that was driven by the needs of a customer and evolved into a line of gaskets that meet all the requirements for Compact PCI faceplate standards while providing superior mechanical and shielding performance.

Leader Tech offers many standard off-the-shelf Fingerstock Gaskets as well as the engineering and custom manufacturing experience to help you solve your application. Whether you need one prototype or a large quantity order, our team at Leader Tech is available to respond to your needs.

COMPRESSION/DEFLECTION PERFORMANCE

Leader Tech. Part No.	Design Compressed Height	Compression Force (Ibs./linear ft.)
3-23T	0.018 (0.46)	25
6-34T	0.049 (1.24)	33
6-50T2	0.049 (1.24)	43
9-19UD	0.072 (1.83)	30
11-32RH	0.035 (0.89)	34
11-45C	0.090 (2.29)	19

Leader Tech. Part No.	Design Compressed Height	Compression Force (lbs./linear ff.)
14-45DT	0.098 (2.49)	24
22-60AH	0.140 (3.56)	25
22-60RH	0.070 (1.78)	48
23-76FSC	0.130 (3.30)	34
25-109C	0.140 (3.56)	36
25-78FS	0.150 (3.81)	36

The data presented is based on testing and to our knowledge is accurate and true. Since applications, test methods, and test procedures may vary, we recommend that users of our products perform their own test to assure the suitability of these specific applications. We offer no product warranty, either expressed or implied, except that any product proven defective will be replaced. Freedom from present or future patent infringement cannot be guaranteed, nor can the suitability of our products for specific applications.

ORDERING INFORMATION

When placing an order or requesting a quotation, please give part number, your required finish I.D. from the chart below, and required length.

PART NUMBER EXAMPLE:			
Stock Item	Finish Code	Length	
11-S-32RH	— SN —	16	

The above example is the "Slot Mount Series" gasket shown on page 11. The height is .11 inch and the width is .32 inch. The "-S-" indicates a soft gasket. The "SN" indicates a bright tin finish. See list below for available finishes. This part is available in lengths of 16 inches. Consult factory for custom lengths or for availability in 25' coils.

	Available Plating Finishes:	
Finish Type	Applicable Specifications	Leader Tech Finish Code
Bright Finish		BD
Bright Tin	ASTM B-545, CLASS A	SN
Satin/Matte Tin	ASTM B-545, CLASS A	ST
Tin Lead	ASTM B-579, SC2	SNpb
Electro-less Nickel RoHS	ASTM B-733, SC 1, CLASS 1	NI
Zinc/Chromate Clear	ASTM B-633, SC1, TYPE III	Zinc
Zinc/Chromate Yellow	ASTM B-633, SC1, TYPE II	ZincY
Clear Cadmium Chromate	ASTM B-766, CLASS 5, TYPE III	CDC
Yellow Cadmium Chromate	ASTM B-766,CLASS 5, TYPE II	CDY
Bright Silver	ASTM B-700, TYPE 2, GRADE B, CLASS N	AG
Satin/Matte Silver	ASTM B-700, TYPE 2, GRADE A, CLASS N	MAG
Gold	ASTM B-488, TYPE I, CODE C, CLASS 1.25	AU
Solderable Unplated	-	SU

Standard plating finish is .0001 nch (.0025 mm) minimum. Plating processes and hicknesses may be varied o meet customer needs. Standard plating finish for gold is 0.00005 inches. See adjacent list of available inishes and consult factory for additional options.

ADHESIVE MOUNTING OF FINGERSTOCK GASKETS

Leader Tech tape mounted CuBe gaskets offer pressure-sensitive, double-sided adhesive for strong bonding to a wide variety of surface conditions. Ideal for all-purpose contact strips used in metal cabinets and electronic enclosures and is unaffected by temperatures from -67 to +250°F (-55 to 121°C)

Simply follow these four easy steps:

- Remove all grease and oily residue with a solvent such as isopropyl alcohol/water mixture (rubbing alcohol) or heptane. Dry and smooth the mounting surface with emery cloth if necessary.
- 2. Peal off the protective paper backing from the pressure sensitive adhesive tape.
- 3. Place the gasket in correct position. Press firmly to ensure a good bond to surface. Avoid repositioning, which might impair the effectiveness of the adhesive or may bend or kink the strip. NOTE: On strips where fingers cover the solid portion of the gasket, pressure may be applied by inserting a mandrel in the strip and pressing down.
- 4. At room temperature approximately 50% of the ultimate strength will be achieved after 20 minutes, 90% after 24 hours, and 100% after 72 hours. In some cases, bond strength can be increased and ultimate bond strength can be achieved more quickly by exposure of the bond to elevated temperature, e.g., 150°F (66°C) for 1 hour.

METALS GALVANIC COMPATIBILITY CHART Anodic Index (V) Group Metallurgical Category **Compatible Surface Finishes** Number Gold Silver Nickel Be-Cu Tin Sn-Pb Zinc 1 Gold, solid and plated, Wrought platinum, graphite carbon 0.00 2 0.05 3 Rhodium plating 0.10 4 Silver, high-silver alloys 0.15 5 0.20 6 0.25 7 Nickel, nickel-copper alloys, titanium, titanium alloys, Monel 0.30 BerylliumCopper, lowbrasses or bronzes, silversolder, copper, Ni-Cralloys, austenitic corrosion resistant steels, most chrome-moly steels, specialty high-temp stainless steels 8 0.35 9 Commercial yellow brasses and bronzes 0.40 10 High brasses and bronzes, naval brass, Muntz metal 0.45 18% Cr type corrosion resistant steels, common 300 series stainless steels 0.50 11 12 0.55 Chromium or tin plating; 12% Cr type corrosion resistant steels, most 400 series stainless steels, i.e., 410 and some cast stainless steels 13 0.60 14 Terreplate, tin-lead solder 0.65 15 Lead; high-lead alloys 0.70 16 Wrought 2000 series aluminum alloys 0.75 17 0.80 18 Wrought aluminum alloys except 2000 series cast Al-Si alloys, 6000 series aluminum 0.85 19 0.90 20 Cast aluminum alloys other than Al-Si; cadmium plating 0.95 21 1.00 22 1.05 23 1.10 24 1.15 25 Hot Dipped galvanized or electrogalvanized steel 1.20 26 Wrought zinc; zinc die cast alloys 1.25 27 1.30 28 1.35 29 1.40 30 1.45 31 1.50 32 1.55 33 1.60 34 1.65 35 1.70 1.75 36 Wrought and cast magnesium alloys 37 1.80 Beryllium 38 1.85

*Harsh Environment .10 volts Max

*Normal Environment .25 volts Max.

*Office Environment .50 volts Max

7

LOW PROFILE SERIES

LPAH Low P	rofile	Adhe	esive I	Mount	ł						Black = inches Blue = mm					
PART NUMBER	,	4	1	В		FINGER		PITCH		THICK	LEN	GTH	FINGERS	TAPE		
8-45LPAH-XX-16	0.08	2.03	0.45	11.43	0.100	2.54	0.125	3.18	0.004	0.102	16	406	128	0.145		
8-S-45LPAH-XX-16	0.08	2.03	0.45	11.43	0.100	2.54	0.125	3.18	0.003	0.076	16	406	128	0.145		
12-60LPAH-XX-16	0.12	3.05	0.60	15.24	0.100	2.54	0.125	3.18	0.004	0.102	16	406	128	0.200		
12-S-60LPAH-XX-16	0.12	3.05	0.60	15.24	0.100	2.54	0.125	3.18	0.003	0.076	16	406	128	0.200		

Thelowprofileseriesgasketsincorporatedesignfeaturesthatallowforsomeofthelowest compressionforcesintheindustry,whileachievinghighperformanceshieldingeffectiveness. These gaskets are ideally suited for small aperture applications.

XX - Select material/finish (see page 6)

PART NUMBER	1	A	В		FINGER		PITCH		MAT.	THICK	LEN	GTH	FINGERS	HOOK ID	TAPE
6-45LPH-060-XX-16	0.06	1.52	0.45	11.43	0.100	2.54	0.125	3.18	0.004	0.102	16	406	128	0.060	0.145
6-S-45LPH-060-XX-16	0.06	1.52	0.45	11.43	0.100	2.54	0.125	3.18	0.003	0.076	16	406	128	0.060	0.145
		10UNTII PTIONS Tape		< - Selec	t mater	ial/finisł	h (see pa	age 6)		-		——в			C
c —															

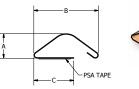
PCI SERIES

High performance Compact PCI Gaskets designed for easy card insertion in rack mount applications. This gasket is available in two different sizes to accommodate different customer extrusions. They are available in both Copper Beryllium and Stainless Steel.

PART NUMBER		4		В	0	2	1)	FIN	Jer	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
7-19PCI-XX-4.6	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	4.60	117	23
7-19PCI-XX-9.0	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	9.00	229	45
7-19PCI-XX-14.4	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	14.40	366	72
7-19PCI-SS-4.6	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	4.60	117	23
7-19PCI-SS-9.0	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	9.00	229	45
7-19PCI-SS-14.4	0.07	1.78	0.18	4.57	0.05	1.27	0.01	0.25	0.180	4.57	0.200	5.08	0.002	0.051	14.40	366	72
8-19PCI-XX-4.6	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	4.60	117	23
8-19PCI-XX-9.0	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	9.00	229	45
8-19PCI-XX-14.4	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	14.40	366	72
8-19PCI-SS-4.6	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	4.60	117	23
8-19PCI-SS-9.0	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	9.00	229	45
8-19PCI-SS-14.4	0.07	1.78	0.19	4.83	0.05	1.27	0.02	0.51	0.180	4.57	0.200	5.08	0.002	0.051	14.40	366	72

Extrusio

MOUNTING XX - Select material/finish (see page 6) OPTIONS


ADHESIVE MOUNT SERIES

PART NUMBER		4	I	3	(0	FIN	GER	PIT	СН	MAT.	THICK	COMP	WIDTH	COMP	HEIGHT	LEN	GTH	FINGERS	TAPE
11-32AH-XX-16	0.11	2.79	0.32	8.13	0.20	5.08	0.170	4.32	0.187	4.75	0.003	0.076	0.39	9.91	0.04	1.02	16	406	86	0.145
11-S-32AH-XX-16	0.11	2.79	0.32	8.13	0.20	5.08	0.170	4.32	0.187	4.75	0.002	0.051	0.39	9.91	0.04	1.02	16	406	86	0.145
13-37AH-XX-16	0.13	3.30	0.37	9.40	0.21	5.33	0.225	5.72	0.250	6.35	0.003	0.076	0.51	12.95	0.05	1.27	16	406	64	0.145
13-S-37AH-XX-16	0.13	3.30	0.37	9.40	0.21	5.33	0.225	5.72	0.250	6.35	0.002	0.051	0.51	12.95	0.05	1.27	16	406	64	0.145
14-38AH-XX-16	0.14	3.56	0.38	9.65	0.20	5.08	0.343	8.71	0.375	9.53	0.004	0.102	0.53	13.46	0.05	1.27	16	406	43	0.145
22-60AH-XX-16	0.22	5.59	0.60	15.24	0.28	7.11	0.344	8.74	0.375	9.53	0.005	0.127	0.73	18.54	0.09	2.29	16	406	43	0.200
22-S-60AH-XX-16	0.22	5.59	0.60	15.24	0.28	7.11	0.344	8.74	0.375	9.53	0.003	0.076	0.73	18.54	0.09	2.29	16	406	43	0.200
32-78AH-XX-16	0.32	8.13	0.78	19.81	0.45	11.43	0.344	8.74	0.375	9.53	0.004	0.102	0.98	24.89	0.12	3.05	16	406	43	0.375
32-S-78AH-XX-16	0.32	8.13	0.78	19.81	0.45	11.43	0.344	8.74	0.375	9.53	0.003	0.076	0.98	24.89	0.12	3.05	16	406	43	0.375

MOUNTING OPTIONS The AHseries gaskets are adhesive mounted general-purpose gaskets used in both compression and wiping applications. Sizes range from .11" (2.8mm) to .32" (8.1 mm) in height. Applications include electronic enclosures, shielded cabinets, and MRI chamber doors.

XX - Select material/finish (see page 6)

DOME TOP SERIES

The Dome Top Gaskets are known for their large surface area for electrical contact and smooth wiping action. Also available in a solid top profile allowing for omni-directional wiping. Together with the Slot Mount Series, the Dome Top Gaskets are a mainstay in the enclosure/chassis industries. Commonly mounted with adhesive tape.

DT Dome	Тор											Blo	ack = ind	ches Blu	ie = m	im Co	omp = Con	npressed
PART NUMBER		4	1	В	FIN	GER	PIT	СН	MAT.	THICK	COMP	WIDTH	COMP	HEIGHT	LEN	GTH	FINGERS	TAPE
11-35DT-XX-15	0.11	2.79	0.35	8.89	0.169	4.29	0.187	4.75	0.003	0.076	0.38	9.65	0.06	1.52	15	381	80	0.100
11-S-35DT-XX-15	0.11	2.79	0.35	8.89	0.169	4.29	0.187	4.75	0.002	0.051	0.38	9.65	0.06	1.52	15	381	80	0.100
14-45DT-XX-15	0.14	3.56	0.45	11.43	0.228	5.79	0.250	6.35	0.003	0.076	0.51	12.95	0.07	1.78	15	381	60	0.100
14-S-45DT-XX-15	0.14	3.56	0.45	11.43	0.228	5.79	0.250	6.35	0.002	0.051	0.51	12.95	0.07	1.78	15	381	60	0.100
22-62DT-XX-15	0.22	5.59	0.62	15.75	0.345	8.76	0.375	9.53	0.004	0.102	0.76	19.30	0.10	2.54	15	381	40	0.200
22-S-62DT-XX-15	0.22	5.59	0.62	15.75	0.345	8.76	0.375	9.53	0.003	0.076	0.76	19.30	0.10	2.54	15	381	40	0.200

Tape

The Dome Top gaskets have fully independent fingers that are adhesive mounted Their smooth curve provides a large area for electrical contact and smooth wiping action.

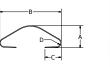
XX - Select material/finish (see page 6)

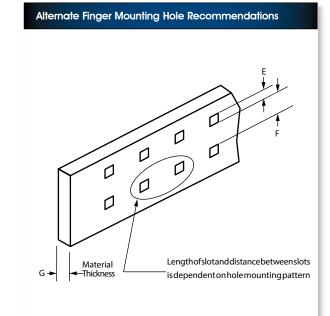
- PSA TAPE

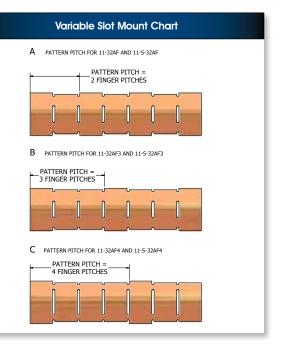
Top	Solid										Blo	ack = ind	ches Blu	ie = m	im Co	omp = Con	npressed
Å	١	I	B	FIN	Ger	PIT	СН	MAT.	THICK	COMP	WIDTH	COMP	HEIGHT	LEN	GTH	FINGERS	TAPE
0.11	2.79	0.35	8.89	0.169	4.29	0.187	4.75	0.003	0.076	0.38	9.65	0.06	1.52	15	381	80	0.100
0.11	2.79	0.35	8.89	0.169	4.29	0.187	4.75	0.002	0.051	0.38	9.65	0.06	1.52	15	381	80	0.100
0.14	3.56	0.45	11.43	0.250	6.35	0.250	6.35	0.003	0.076	0.51	12.95	0.07	1.78	15	381	60	0.100
0.14	3.56	0.45	11.43	0.250	6.35	0.250	6.35	0.002	0.051	0.51	12.95	0.07	1.78	15	381	60	0.100
0.22	5.59	0.62	15.75	0.345	8.76	0.375	9.53	0.004	0.102	0.76	19.30	0.10	2.54	15	381	40	0.200
0.22	5.59	0.62	15.75	0.345	8.76	0.375	9.53	0.003	0.076	0.76	19.30	0.10	2.54	15	381	40	0.200
	0.11 0.11 0.14 0.14 0.22	0.11 2.79 0.14 3.56 0.14 3.56 0.22 5.59	L 2.79 0.35 0.11 2.79 0.35 0.14 3.56 0.45 0.14 3.56 0.45 0.22 5.59 0.62	Image: Product with the system of t	L L L L 0.11 2.79 0.35 8.89 0.169 0.11 2.79 0.35 8.89 0.169 0.14 3.56 0.45 11.43 0.250 0.14 3.56 0.45 11.43 0.250 0.22 5.59 0.42 15.75 0.345	Image: Physical system Image: Physisystem Image: Physisystem	Image: Physical system Image: Physical system	Image: Physical system Image: Physical system PHI→F PHI→F 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.14 3.56 0.45 1.143 0.250 6.35 0.250 6.35 0.14 3.56 0.45 11.43 0.250 6.35 0.250 6.35 0.12 5.59 0.62 15.75 0.345 8.76 0.355 9.53	Image: Physical system Image: Physical system PH™ PH™	Image: Problem state in the image in the image. Image in the image in the image in the image in the image. Image in the image in the image. Image in the image in the image. Image in	Image: Problem state sta	Image: Problem state in the image in the image. FIN=Free image in the image in the image in the image in the image. MAT. THE CR COMPUTE 0.11 2.79 0.35 8.89 0.169 4.29 0.167 4.75 0.003 0.076 0.38 9.65 0.11 2.79 0.35 8.89 0.169 4.29 0.187 4.75 0.002 0.051 0.38 9.65 0.14 3.56 0.45 11.43 0.250 6.35 0.003 0.076 0.51 12.95 0.22 5.59 0.62 15.75 0.345 8.76 0.35 9.53 0.004 0.102 0.76 19.30	Image: Problem state sta	Image: Problem state sta	Image: Problem state Image: P	Image: Problem state Image: P	

MOUNTING OPTIONS The Dome Top "Solid" Series gaskets have a strip that connects each finger along the top. This allows for unique angular wiping action without snagging. Other feature Tape are the same as the Dome Top Series.

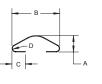
XX - Select material/finish (see page 6)

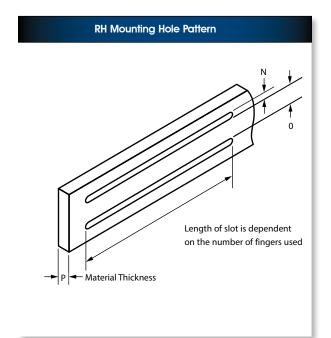

AAA

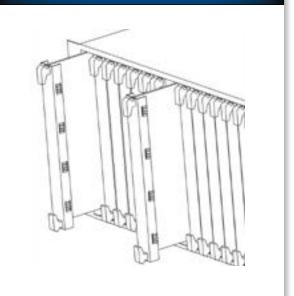

SLOT MOUNT SERIES


Slot mount gaskets are a standard in the electronic enclosure industry. These gaskets are used in shorter lengths as ESD contacts and longer lengths as EMI gaskets, which clip into slots or slide onto mounted tracks.

		1	I	В		2)	Recom	E mended	Recom	F nended	* Recomm	G nended	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
1-32AF-XX-16 0	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.004	0.102	16	406	85
11-32AF3-XX-16 0	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.004	0.102	16	406	85
1-32AF4-XX-16 0	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.004	0.102	16	406	85
11-S-32AF-XX-16 0	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.051	16	406	85
1-S-32AF3-XX-16 0	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.051	16	406	85
11-S-32AF4-XX-16 0	0.11	2.79	0.32	8.13	0.08	2.03	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.051	16	406	85
22-60AF-XX-16 0	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.07	1.78	0.250	6.35	0.282	7.16	0.005	0.127	16	406	57
22-60AF3-XX-16 0	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.07	1.78	0.250	6.35	0.282	7.16	0.005	0.127	16	406	58
22-S-60AF-XX-16 0	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.07	1.78	0.250	6.35	0.282	7.16	0.003	0.076	16	406	57
22-S-60AF3-XX-16 0	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.07	1.78	0.250	6.35	0.282	7.16	0.003	0.076	16	406	58


SLOT MOUNT SERIES CONT.


PART NUMBER		4		В		2	I	D	* Recom	N mended	* Recom	O mended	* Recom	P mended	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS
1-28RH-XX-16	0.11	2.79	0.28	7.11	0.08	2.03	0.02	0.51	0.09	2.29	0.22	5.59	0.04	1.02	0.169	4.29	0.187	4.75	0.003	0.076	16	406	86
1-S-28RH-XX-16	0.11	2.79	0.28	7.11	0.08	2.03	0.02	0.51	0.09	2.29	0.22	5.59	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.054	16	406	86
1-32RH-XX-16	0.11	2.79	0.32	8.13	0.09	2.29	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.003	0.076	16	406	86
1-S-32RH-XX-16	0.11	2.79	0.32	8.13	0.09	2.29	0.02	0.51	0.09	2.29	0.26	6.60	0.04	1.02	0.169	4.29	0.187	4.75	0.002	0.054	16	406	86
3-30RH-XX-16	0.13	3.30	0.30	7.62	0.09	2.29	0.03	0.76	0.09	2.29	0.25	6.35	0.05	1.27	0.169	4.29	0.187	4.75	0.004	0.102	16	406	86
3-37RH-XX-16	0.13	3.30	0.37	9.40	0.09	2.29	0.02	0.51	0.09	2.29	0.31	7.87	0.04	1.02	0.225	5.72	0.250	6.35	0.003	0.076	16	406	64
3-S-37RH-XX-16	0.13	3.30	0.37	9.40	0.09	2.29	0.02	0.51	0.09	2.29	0.31	7.87	0.04	1.02	0.225	5.72	0.250	6.35	0.002	0.054	16	406	64
2-60RH-XX-16	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.06	1.52	0.250	6.23	0.282	7.16	0.005	0.127	16	406	57
2-S-60RH-XX-16	0.22	5.59	0.60	15.24	0.14	3.56	0.04	1.02	0.14	3.56	0.52	13.21	0.06	1.52	0.250	6.35	0.282	7.16	0.003	0.076	16	406	57


MOUNTING OPTIONS Slot

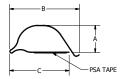
XX - Select material/finish (see page 6)

Slot Mount Series

MOUNTING CONCEPTS

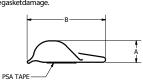
FOLDED SERIES

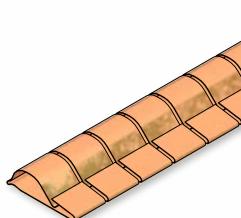
Leader Tech's Folded Gasket series are industry standard, general-purpose gaskets that allow a large range of deflection and compression forces. These gaskets are available with or without tape for alternate attachment methods. Also available in a snag-free version where, under compression, the leading edge of the gasket slides into an extended and folded base which prevents possible damage to the gasket.


FS Folded		·												Black =	= inch	es Blu	e = m	m Co	omp = Con	npressed
PART NUMBER		A		B	(2	FIN	GER	PIT	СН	MAT.	THICK		omp Gth		omp Ght	LEN	GTH	FINGERS	TAPE
11-28FS-XX-16	0.11	2.79	0.28	7.11	0.24	6.10	0.170	4.32	0.188	4.78	0.003	0.076	0.37	9.40	0.07	1.78	16	406	85	0.145
11-28FS-XX-300	0.11	2.79	0.28	7.11	0.24	6.10	0.170	4.32	0.188	4.78	0.003	0.076	0.37	9.40	0.07	1.78	300	7620	1596	0.145
11-S-28FS-XX-16	0.11	2.79	0.28	7.11	0.24	6.10	0.170	4.32	0.188	4.78	0.002	0.051	0.37	9.40	0.07	1.78	16	406	85	0.145
11-S-28FS-XX-300	0.11	2.79	0.28	7.11	0.24	6.10	0.170	4.32	0.188	4.78	0.002	0.051	0.37	9.40	0.07	1.78	300	7620	1596	0.145
14-37FS-XX-16	0.14	3.56	0.37	9.40	0.32	8.13	0.228	5.79	0.250	6.35	0.003	0.076	0.50	12.70	0.10	2.54	16	406	64	0.200
14-37FS-XX-300	0.14	3.56	0.37	9.40	0.32	8.13	0.228	5.79	0.250	6.35	0.003	0.076	0.50	12.70	0.10	2.54	300	7620	1200	0.200
14-S-37FS-XX-16	0.14	3.56	0.37	9.40	0.31	7.87	0.228	5.79	0.250	6.35	0.002	0.051	0.50	12.70	0.10	2.54	16	406	64	0.200
23-60FS-XX-24	0.23	5.84	0.60	15.24	0.50	12.70	0.343	8.71	0.375	9.53	0.004	0.102	0.77	19.56	0.12	3.05	24	610	64	0.250
23-60FS-XX-300	0.23	5.84	0.60	15.24	0.50	12.70	0.343	8.71	0.375	9.53	0.004	0.102	0.77	19.56	0.12	3.05	300	7620	800	0.250
25-78FS-XX-24	0.25	6.35	0.78	19.81	0.53	13.46	0.335	8.51	0.375	9.53	0.005	0.127	0.94	23.88	0.15	3.81	24	610	64	0.375
25-78FS-XX-300	0.25	6.35	0.78	19.81	0.53	13.46	0.340	8.64	0.375	9.53	0.005	0.127	0.94	23.88	0.15	3.81	300	7620	800	0.375
25-S-78FS-XX-24	0.25	6.35	0.78	19.81	0.53	13.46	0.335	8.51	0.375	9.53	0.003	0.076	0.94	23.88	0.15	3.81	24	610	64	0.375
25-S-78FS-XX-300	0.25	6.35	0.78	19.81	0.53	13.46	0.335	8.51	0.375	9.53	0.003	0.076	0.94	23.88	0.15	3.81	300	7620	800	0.375
41-113FS-XX-12	0.41	10.41	1.13	28.70	0.80	20.32	0.460	11.68	0.500	12.70	0.007	0.178	1.94	49.28	0.23	5.84	12	305	24	0.375

Rivet

MOUNTING The Leader TechFS gaskets are industry standard, general-purposegaskets that allowa largerange of deflection and compression forces. These gaskets are available without tape for alternate attachment methods. Consult factory for information.

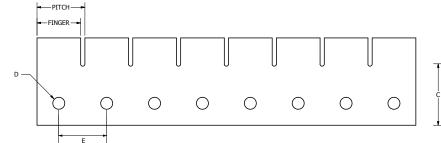

XX - Select material/finish (see page 6)



FSC Folde	d	•								Black =	= inche	es Blu	e = m	m Co	omp = Con	npressed
PART NUMBER		A	1	3	FIN	GER	PIT	СН	MAT.	THICK	CO HEI	omp Ght	LEN	GTH	FINGERS	TAPE
8-25FSC-XX-16	0.08	2.03	0.25	6.35	0.170	4.32	0.188	4.78	0.003	0.076	0.048	1.22	16	406	85	0.145
14-51FSC-XX-16	0.14	3.56	0.51	12.95	0.228	5.79	0.250	6.35	0.003	0.076	0.100	2.54	16	406	64	0.375
14-S-51FSC-XX-16	0.14	3.56	0.51	12.95	0.228	5.79	0.250	6.35	0.002	0.051	0.100	2.54	16	406	64	0.375
23-76FSC-XX-24	0.23	5.84	0.76	19.30	0.343	8.64	0.375	9.53	0.004	0.102	0.115	2.92	24	610	64	0.375

G The FSC was created to provide snagfree gaskets with FSgasket features. The base of the gasket is extended from the mounting area and then folded up, over, down, and then comestores to ver the leading edge of the formed spring. Under compression, the leading edge of the gaskets lides under and is "captured." This "no snag "feature is also used to prevent possible gasket damage.

FOLDED SERIES CONT.


FSV Folded																Blac	⊧k = in	ches	Blue =	mm	Comp) = Co	mpressed
PART NUMBER		4	I	В	(2	I	D	1	E	FIN	GER	PIT	СН	MAT.	THICK	CC	omp Dth		MP Ght	LEN	GTH	FINGERS
11-28FSV23-XX-16	0.11	2.79	0.28	7.11	0.24	6.10	0.06	1.52	0.188	4.78	0.170	4.32	0.188	4.78	0.003	0.076	0.37	9.40	0.07	1.78	16	406	85
11-S-28FSV23-XX-16	0.11	2.79	0.28	7.11	0.24	6.10	0.06	1.52	0.188	4.78	0.170	4.32	0.188	4.78	0.002	0.051	0.37	9.40	0.07	1.78	16	406	85
14-37FSV30-XX-16	0.14	3.66	0.37	9.40	0.32	8.13	0.06	1.52	0.250	6.35	0.228	5.79	0.250	6.35	0.003	0.076	0.50	12.70	0.10	2.54	16	406	64
14-S-37FSV30-XX-16	0.14	3.66	0.37	9.40	0.32	8.13	0.06	1.52	0.250	6.35	0.228	5.79	0.250	6.35	0.002	0.051	0.50	12.70	0.10	2.54	16	406	64
23-60FSV50-XX-24	0.23	5.84	0.60	15.24	0.50	12.70	0.08	2.03	0.375	9.53	0.343	8.71	0.375	9.50	0.004	0.102	0.77	19.56	0.12	3.05	24	610	64
25-78FSV50-XX-24	0.25	6.35	0.78	19.81	0.50	12.70	0.14	3.56	0.375	9.53	0.335	8.51	0.375	9.50	0.005	0.127	0.94	23.88	0.15	3.81	24	610	64
25-S-78FSV50-XX-24	0.25	6.35	0.78	19.81	0.50	12.70	0.14	3.56	0.375	9.53	0.335	8.51	0.375	9.50	0.003	0.076	0.94	23.88	0.15	3.81	24	610	64
41-113FSV-XX-12	0.41	10.41	1.13	28.70	0.80	20.32	0.14	3.56	0.500	12.70	0.460	11.68	0.500	12.70	0.007	0.178	1.94	49.28	0.23	5.84	12	305	24

Tape Rivet Solder XX - Select

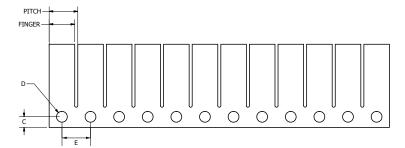
MOUNTING OPTIONS

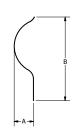
XX - Select material/finish (see page 6)

0

FSDS Folded																Blac	k = ind	ches	Blue =	mm	Comp	= Co	mpressed
PART NUMBER	1	٩	I	B	(C	I	D		E	FIN	GER	PIT	СН		omp Dth		omp Ght		erial ICK	LEN	GTH	FINGERS
25-109FSDS-XX-24	0.25	6.35	1.09	27.69	0.16	4.06	0.14	3.56	0.38	9.65	0.335	8.51	0.375	9.53	1.27	32.26	0.15	3.81	0.005	0.127	24	610	64
25-109FSDS-XX-300	0.25	6.35	1.09	27.69	0.16	4.06	0.14	3.56	0.38	9.65	0.335	8.51	0.375	9.53	1.27	32.26	0.15	3.81	0.005	0.127	300	7620	800
25-S-109FSDS-XX-24	0.25	6.35	1.09	27.69	0.16	4.06	0.14	3.56	0.38	9.65	0.335	8.51	0.375	9.53	1.27	32.26	0.15	3.81	0.003	0.076	24	610	64
25-S-109FSDS-XX-300	0.25	6.35	1.09	27.69	0.16	4.06	0.14	3.56	0.38	9.65	0.335	8.51	0.375	9.53	1.27	32.26	0.15	3.81	0.003	0.076	300	7620	800
41-163FSDS-XX-24	0.41	10.41	1.63	41.40	0.19	4.83	0.14	3.56	0.50	12.70	0.460	11.68	0.500	12.70	1.90	48.26	0.23	5.84	0.007	0.178	24	610	48
41-163FSDS-XX-300	0.41	10.41	1.63	41.40	0.19	4.83	0.14	3.56	0.50	12.70	0.460	11.68	0.500	12.70	1.90	48.26	0.23	5.84	0.007	0.178	300	7620	600

MOUNTING OPTIONS


Tape


Rivet

Solder

TheFSDS is an FSg ask et with its basely ing on the same plane as the curve in the spring form, with the mounting areashortened. This mounting is often modified for custom applications.

XX - Select material/finish (see page 6)

0

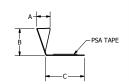
TWIST SERIES

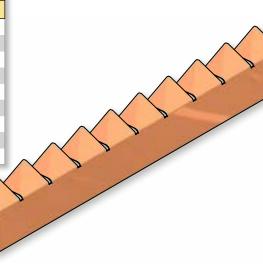
The Twist series gaskets are designed for demanding compression applications. This series can compress to material thickness and provide excellent shielding performance. Profiles include standard flat, right angle, double twist, and clip-on.

T Twist									E	Black =	= inche	es Blu	e = m	m Co	omp = Com	pressed
PART NUMBER	4	4	I	3	(2	FIN	GER	PIT	СН	MATI TH	RIAL CK	LEN	GTH	FINGERS	TAPE
3-20T-XX-24	0.03	0.76	0.20	5.08	0.11	2.79	0.080	2.03	0.095	2.41	0.003	0.076	24	610	253	0.100
3-20T-XX-300	0.03	0.76	0.20	5.08	0.11	2.79	0.080	2.03	0.095	2.41	0.003	0.076	300	7620	3158	0.100
3-23T-XX-24	0.03	0.76	0.23	5.84	0.14	3.56	0.080	2.03	0.095	2.41	0.003	0.076	24	610	253	0.100
3-23T-XX-300	0.03	0.76	0.23	5.84	0.14	3.56	0.080	2.03	0.095	2.41	0.003	0.076	300	7620	3158	0.100
3-S-23T-XX-24	0.03	0.76	0.23	5.84	0.14	3.56	0.080	2.03	0.095	2.41	0.002	0.051	24	610	253	0.100
3-S-23T-XX-300	0.03	0.76	0.23	5.84	0.14	3.56	0.080	2.03	0.095	2.41	0.002	0.051	300	7620	3158	0.100
6-30T-XX-24	0.07	1.78	0.30	7.62	0.15	3.81	0.150	3.81	0.165	4.19	0.003	0.076	24	610	146	0.100
6-30T-XX-300	0.07	1.78	0.30	7.62	0.15	3.81	0.150	3.81	0.165	4.19	0.003	0.076	300	7620	1818	0.100
6-S-30T-XX-24	0.07	1.78	0.30	7.62	0.15	3.81	0.150	3.81	0.165	4.19	0.002	0.051	24	610	146	0.145
6-S-30T-XX-300	0.07	1.78	0.30	7.62	0.15	3.81	0.150	3.81	0.165	4.19	0.002	0.051	300	7620	1818	0.145
6-34T-XX-24	0.07	1.78	0.34	8.64	0.18	4.57	0.150	3.81	0.165	4.19	0.003	0.076	24	610	146	0.145
6-34T-XX-300	0.07	1.78	0.34	8.64	0.18	4.57	0.150	3.81	0.165	4.19	0.003	0.076	300	7620	1818	0.145
6-S-34T-XX-24	0.07	1.78	0.34	8.64	0.18	4.57	0.150	3.81	0.165	4.19	0.002	0.051	24	610	146	0.145
6-S-34T-XX-300	0.07	1.78	0.34	8.64	0.18	4.57	0.150	3.81	0.165	4.19	0.002	0.051	300	7620	1818	0.145

Таре Solder

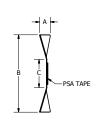
MOUNTING OPTIONS XX - Select material/finish (see page 6)




\	
`−PSA	TAPE

TV Twist													Blo	ack =	inches Blu	ie = mm
PART NUMBER		A		B	(2	FIN	GER	PIT	СН	MATI TH	erial Ck	LEN	GTH	FINGERS	TAPE
3-23TV-XX-24	0.03	0.76	0.08	2.03	0.16	4.06	0.080	2.03	0.095	2.41	0.003	0.076	24	610	253	0.100
3-23TV-XX-30	0.03	0.76	0.08	2.03	0.16	4.06	0.080	2.03	0.095	2.41	0.003	0.076	300	7620	3158	0.100
3-23TV30-XX-24	0.03	0.76	0.08	2.03	0.30	7.62	0.080	2.03	0.095	2.41	0.003	0.076	24	610	253	0.250
3-S-23TV-XX-24	0.03	0.76	0.08	2.03	0.16	4.06	0.080	2.03	0.095	2.41	0.002	0.051	24	610	253	0.100
3-S-23TV30-XX-300	0.03	0.76	0.08	2.03	0.30	7.62	0.080	2.03	0.095	2.41	0.002	0.051	300	7620	3158	0.250
6-34TV-XX-24	0.07	1.78	0.14	3.56	0.20	5.08	0.150	3.81	0.165	4.19	0.003	0.076	24	610	146	0.145
6-34TV-XX-300	0.07	1.78	0.14	3.56	0.20	5.08	0.150	3.81	0.165	4.19	0.003	0.076	300	7620	1818	0.145
6-S-34TV-XX-24	0.07	1.78	0.14	3.56	0.20	5.08	0.150	3.81	0.165	4.19	0.002	0.051	24	610	146	0.145
6-S-34TV-XX-300	0.07	1.78	0.14	3.56	0.20	5.08	0.150	3.81	0.165	4.19	0.002	0.051	300	7620	1818	0.145

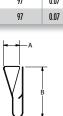
Таре Solder


TWIST SERIES CONT.

Tape

T2 Twist													Ble	ack =	inches Blu	ıe = mm
PART NUMBER		4		B	(2	FIN	GER	PIT	СН	MATI TH	erial ICK	LEN	GTH	FINGERS	TAPE
6-50T2-XX-24	0.07	1.78	0.50	12.70	0.18	4.57	0.150	3.81	0.165	4.19	0.003	0.076	24	610	146	0.145
6-50T2-XX-300	0.07	1.78	0.50	12.70	0.18	4.57	0.150	3.81	0.165	4.19	0.003	0.076	300	7620	1818	0.145
6-S-50T2-XX-24	0.07	1.78	0.50	12.70	0.18	4.57	0.150	3.81	0.165	4.19	0.002	0.051	24	610	146	0.145
6-S-50T2-XX-300	0.07	1.78	0.50	12.70	0.18	4.57	0.150	3.81	0.165	4.19	0.002	0.051	300	7620	1818	0.145

MOUNTING XX - Select material/finish (see page 6) OPTIONS



UT Twist														Blac	ck = i	nches Blu	ue = mm
PART NUMBER	1	A		B	FIN	GER	PIT	СН	MATI TH	rial Ck	LEN	GTH	FINGERS	CLI	P ID	LANCE	LANCE PITCH
3-23UT-040-XX-16	0.03	0.76	0.15	3.81	0.080	2.03	0.095	2.41	0.003	0.076	16	406	168	0.04	1.02	n/a	n/a
3-23UT-070-XX-16	0.03	0.76	0.15	3.81	0.080	2.03	0.095	2.41	0.003	0.076	16	406	168	0.07	1.78	n/a	n/a
3-23UT-070-DL-XX-16	0.03	0.76	0.15	3.81	0.080	2.03	0.095	2.41	0.003	0.076	16	406	168	0.07	1.78	D	1″
6-34UT-040-XX-16	0.07	1.78	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.04	1.02	n/a	n/a
6-34UT-070-XX-16	0.07	1.78	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.07	1.78	n/a	n/a
6-34UT-070-DL-XX-16	0.07	1.78	0.22	5.59	0.150	3.81	0.165	4.19	0.003	0.076	16	406	97	0.07	1.78	D	1″

Clip

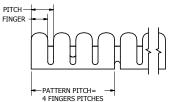
MOUNTING XX - Select material/finish (see page 6) OPTIONS

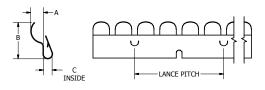
UT3 Twist Black = inches Blue = mm MATERIAL THICK LANCE LENGTH FINGERS CLIP ID LANCE PART NUMBER С FINGER PITCH A В 6-34UT3-050-XX-16 0.07 1.78 0.38 9.65 0.22 5.59 0.150 3.81 0.165 4.19 0.003 16 406 97 0.05 1.27 n/a 0.076 n/a 9.65 0.076 406 1.27 1″ 6-34UT3-050-DL-XX-16 0.07 1.78 0.38 0.22 5.59 0.150 3.81 0.165 4.19 0.003 16 97 0.05 D 6-34UT3-070-XX-16 0.07 1.78 0.38 9.65 0.22 5.59 0.150 3.81 0.165 4.19 0.003 0.076 16 406 97 0.07 1.78 n/a n/a 3.81 0.076 406 1.78 6-34UT3-070-DL-XX-16 0.07 1.78 0.38 9.65 0.22 5.59 0.150 0.165 4.19 0.003 16 97 0.07 D 1″

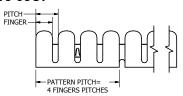
ING XX - Select material/finish (see page 6)

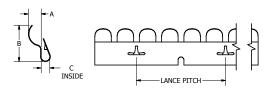
CLIP-ON SERIES

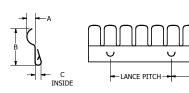
Clip

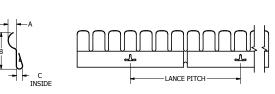

The Clip-On Gaskets are used in enclosures, shielded cabinets, and on circuit cards as ESD contacts and EMI gaskets. For edge mount applications, close attention must be given to clip size, lance requirements, deflection parameters and finger configuration. Leader Tech provides application assistance in the development of specifications.

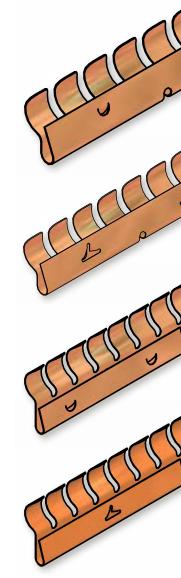

C Clip-On															E	slack =	inche	es Blu	e = m	m C	omp = Co	mpressed
PART NUMBER		4	I	B	C	2	FIN	GER	PIT	СН	MATI TH			omp Dth	CC HEI	omp Ght	LAN ST/		lan Pit	NCE Ch	FINGERS	LANCE
10-30CD-XX-16	0.10	2.54	0.30	7.62	0.07	1.78	0.135	3.43	0.182	4.62	0.005	0.127	0.33	8.38	0.05	1.27	0.341	8.66	0.728	18.49	88	D
10-30CT-XX-16	0.10	2.54	0.30	7.62	0.07	1.78	0.135	3.43	0.182	4.62	0.005	0.127	0.33	8.38	0.05	1.27	0.341	8.66	0.728	18.49	88	T
11-45CD-XX-16	0.11	2.79	0.45	11.43	0.07	1.78	0.147	3.73	0.193	4.90	0.005	0.127	0.47	11.94	0.06	1.52	0.267	6.78	0.748	19.00	84	D
11-45CT-XX-16	0.11	2.79	0.45	11.43	0.07	1.78	0.147	3.73	0.193	4.90	0.005	0.127	0.47	11.94	0.06	1.52	0.651	16.54	1.352	34.34	84	Т


XX - Select material/finish (see page 6)

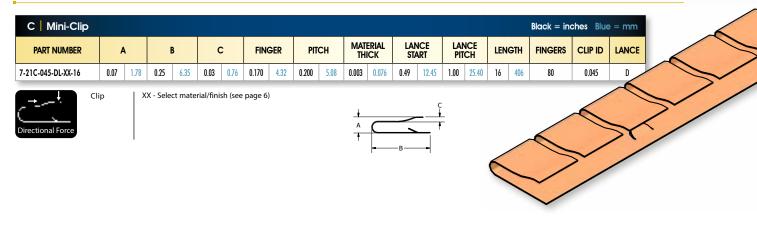


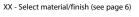



10-30CT



11-45CD PITCH FINGER + + + PATTERN PITCH= 7 FINGERS PITCHES





CLIP-ON SERIES CONT.

											МАТ	Erial	<u> </u>	MP	<u> </u>	OMP	1.69	NCE	LA	NCE		
PART NUMBER		4		В	0	2	FING	JER	PIT	СН		ICK		DTH		GHT		ART		ICH	FINGERS	LANCE
0-30C-045-XX-16	0.10	2.54	0.30	7.62	0.045	1.14	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	-	-	-	-	86	n/a
0-30C-050-XX-16	0.10	2.54	0.30	7.62	0.050	1.27	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	-	-	-	-	86	n/a
0-30C-065-XX-16	0.10	2.54	0.30	7.62	0.065	1.65	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	-	-	-	-	86	n/a
0-30C-070-XX-16	0.10	2.54	0.30	7.62	0.070	1.78	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	-	-	-	-	86	n/a
0-30C-045-DL-XX-16	0.10	2.54	0.30	7.62	0.045	1.14	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	0.5	12.7	1	25.4	86	D
0-30C-050-DL-XX-16	0.10	2.54	0.30	7.62	0.050	1.27	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	0.5	12.7	1	25.4	86	D
0-30C-065-DL-XX-16	0.10	2.54	0.30	7.62	0.065	1.65	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	0.5	12.7	1	25.4	86	D
0-30C-070-DL-XX-16	0.10	2.54	0.30	7.62	0.070	1.78	0.140	3.56	0.187	4.75	0.005	0.127	0.33	8.38	0.05	1.27	0.5	12.7	1	25.4	86	D
1-45C-045-XX-16	0.11	2.79	0.45	11.43	0.045	1.14	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	-	-	-	-	86	n/a
1-45C-050-XX-16	0.11	2.79	0.45	11.43	0.050	1.27	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	-	-	-	-	86	n/a
1-45C-065-XX-16	0.11	2.79	0.45	11.43	0.065	1.65	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	-	-	-	-	86	n/a
1-45C-070-XX-16	0.11	2.79	0.45	11.43	0.070	1.78	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	-	-	-	-	86	n/a
1-45C-045-DL-XX-16	0.11	2.79	0.45	11.43	0.045	1.14	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	0.5	12.7	1	25.4	86	D
1-45C-050-DL-XX-16	0.11	2.79	0.45	11.43	0.050	1.27	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	0.5	12.7	1	25.4	86	D
1-45C-065-DL-XX-16	0.11	2.79	0.45	11.43	0.065	1.65	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	0.5	12.7	1	25.4	86	D
1-45C-070-DL-XX-16	0.11	2.79	0.45	11.43	0.070	1.78	0.140	3.56	0.187	4.75	0.005	0.127	0.47	11.94	0.06	1.52	0.5	12.7	1	25.4	86	D
5-109C-070-XX-16	0.25	6.35	1.09	27.69	0.070	1.78	0.340	8.64	0.375	9.53	0.005	0.127	1.27	32.26	0.08	2.03	-	-	-	-	43	n/a
5-109C-070-DL-XX-16	0.25	6.35	1.09	27.69	0.070	1.78	0.340	8.64	0.375	9.53	0.005	0.127	1.27	32.26	0.08	2.03	0.5	12.7	1	25.4	43	D
5-S-109C-070-XX-16	0.25	6.35	1.09	27.69	0.070	1.78	0.340	8.64	0.375	9.53	0.003	0.076	1.27	32.26	0.08	2.03	-	-	-	-	43	n/a
5-S-109C-070-DL-XX-16	0.25	6.35	1.09	27.69	0.070	1.78	0.340	8.64	0.375	9.53	0.003	0.076	1.27	32.26	0.08	2.03	0.5	12.7	1	25.4	43	D
5-109C-120-XX-16	0.25	6.35	1.09	27.69	0.120	3.05	0.340	8.64	0.375	9.53	0.005	0.127	1.27	32.26	0.08	2.03	-	-	-	-	43	n/a
5-109C-130-XX-16	0.25	6.35	1.09	27.69	0.130	3.30	0.340	8.64	0.375	9.53	0.005	0.127	1.27	32.26	0.08	2.03	-	-	-	-	43	n/a
Clip	.	1 Co	onsult fa	ctory fo	r optior	al clip	sizes and	loptior	al lance	feature	s.						- -	A - ⇒				
→	-																					n/a
rectional Force		XX	< - Selec	t mater	ial/finis	h (see	page 6)									Ŧ					1	L

17

C INSIDE

CLIP-ON SERIES CONT.

CPS Clip-On											•		Blac	ck = i	nches Blue	e = mm	
PART NUMBER	A		B	5	¢		FIN	GER	PIT	СН	MAT TH		LEN	стн	FINGERS/ STRIP	LANCE	
25-55CPS-XX-16	0.25	6.35	0.55	13.97	0.04	1.02	0.220	5.59	0.250	6.35	0.004	0.102	16	406	64	D]

С

INSIDE

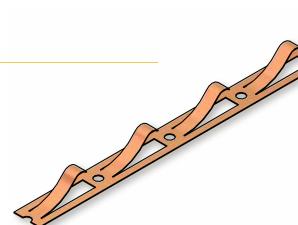
INSIDE

XX - Select material/finish (see page 6)

Perpendicular Shielding Gaskets

- Finger design allows for continuous contact across the length of the strip
- "D" lance provides superior retention of gasket to the mounting surface
- 0.80 D-clip is retained with .100 D-hole

CPG Clip-On						·							Blac	ck = i	nches Blue	e = mm
PART NUMBER	A	•	1	3	c	;	FIN	GER	PIT	СН	MATI THI	erial Ck	LEN	стн	FINGERS/ STRIP	LANCE
6-31CPG-XX-12	0.06	1.52	0.31	7.87	0.04	1.02	0.500	12.70	0.545	13.84	0.004	0.102	12	305	22	D
6-31CPG-XX-16	0.06	1.52	0.31	7.87	0.04	1.02	0.500	12.70	0.545	13.84	0.004	0.102	16	406	29	D

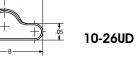

XX - Select material/finish (see page 6)

Perpendicular Electrical Grounding Strips

- Finger extension provides grounding from card or PCB to a backplane housing surface
- Wide clip-on area with "D" lance offers reliable retention .0035 material offers significant resiliency

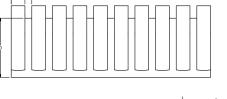
GROUNDING SERIES

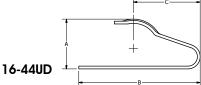
PART NUMBER		4	I	B	c	•	FIN	GER	PIT	СН		erial ICK	FINGERS
14-18ML-XX-16	0.14	3.56	0.28	7.11	0.18	4.57	0.080	2.03	0.500	12.70	0.005	0.127	32
14-18ML-XX-24	0.14	3.56	0.28	7.11	0.18	4.57	0.080	2.03	0.500	12.70	0.005	0.127	48
XX - Select material/fin	ish (see	page 6))										
		1.056 TYI		P	50 TYP		• <u></u>			0] <
										-	—в—		



CONTACT SERIES

Contact gaskets are primarily used for grounding and shielding in high frequency applications. These gaskets provide engineers and designers with flexibility to solve their shielding and grounding issues. They are available in a variety of different lengths, widths and profiles. Standard factory length for Contact Series strips is 16". Individual contacts available in tape & reel packaging. Adhesive tape is optional - please consult factory.

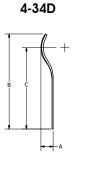


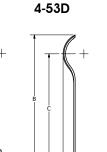


4-38D

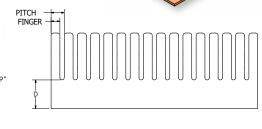
PITCH

FINGER

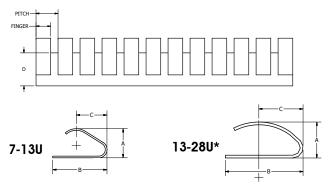


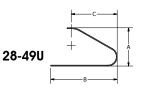


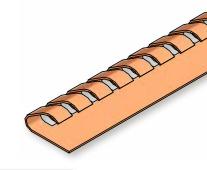
9-19UD 10-2	6UD	16-44	UD (Conta	ct Ser	ies										В	lack = inches B	ue = mm
PART NUMBER		4	1	В	(C	1	D	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/STRIP	TAPE
9-19UD-XX-16	0.09	2.29	0.19	4.83	0.11	2.79	0.13	3.30	0.040	1.02	0.060	1.52	0.004	0.102	16	406	266	NO
10-26UD-XX-16	0.11	2.79	0.26	6.60	0.17	4.32	0.22	5.59	0.050	1.27	0.075	1.90	0.006	0.152	16	406	213	NO
16-44UD-XX-16	0.16	4.06	0.44	11.18	0.24	6.10	0.33	8.38	0.062	1.57	0.093	2.36	0.010	0.254	16	406	172	NO


9-78D

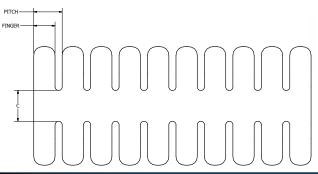
XX - Select material/finish (see page 6)

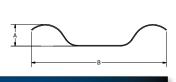


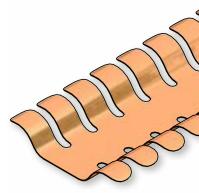



4-34D 4-38D	4-53[9-7	'8D 9	9-78D	-A	Conto	act Se	eries							Blac	k = inc	hes Blue	= mm
PART NUMBER	ļ	A		B	(C	I	C	FIN	JER	PIT	СН	MAT TH	erial Ck	LEN	GTH	FINGERS/ STRIP	TAPE
4-34D-XX-16	0.04	1.02	0.34	8.63	0.29	7.37	0.13	3.30	0.040	1.02	0.060	1.52	0.004	0.102	16	406	266	NO
4-38D-XX-16	0.05	1.27	0.38	9.65	0.31	7.87	0.062	15.75	0.050	1.27	0.075	1.90	0.006	0.152	16	406	213	NO
4-53D-XX-16	0.05	1.27	0.53	13.46	0.47	11.94	0.22	5.59	0.050	1.27	0.075	1.90	0.006	0.152	16	406	213	NO
9-78D-XX-16	0.05	1.27	0.78	19.81	0.66	16.76	0.31	7.87	0.062	1.57	0.093	2.36	0.010	0.254	16	406	172	NO
9-78D-A-XX-16	0.09	2.29	0.78	19.81	0.66	16.76	0.31	7.87	0.062	1.57	0.093	2.36	0.010	0.254	16	406	172	NO

CONTACT SERIES CONT.

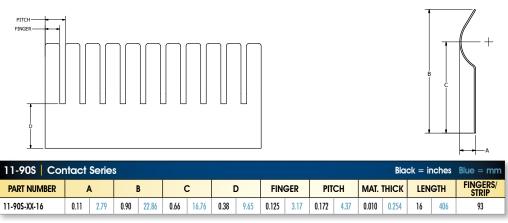


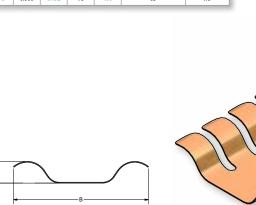


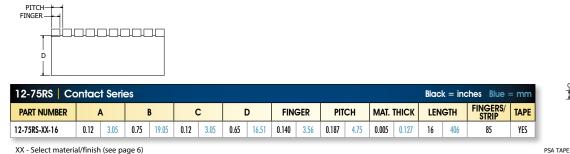


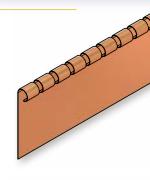
7-130 13-2	8U 28	3-49U	Con	ntact S	eries											B	ack = inches Bl	ue = mm
PART NUMBER		4	i	B	(;	ſ)	FIN	Ger	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/STRIP	TAPE
7-13U-XX-16	0.07	1.78	0.13	3.30	0.07	1.78	0.09	2.29	0.040	1.02	0.060	1.52	0.004	0.102	16	406	266	NO
13-28U-XX-16	0.13	3.30	0.28	7.11	0.16	4.06	0.23	5.84	0.095	2.41	0.135	3.43	0.010	0.254	16	406	118	NO
28-49U-XX-16	0.28	7.11	0.49	12.45	0.34	8.64	0.38	9.65	0.125	3.17	0.187	4.75	0.006	0.152	16	406	85	NO

XX - Select material/finish (see page 6) *Finger width starts at .095 and tapers to .092.






11-78R2 Co	ontac	t Serie	∋s											BI	ack = inches Bl	ue = mm
PART NUMBER A B C FINGER PITCH MAT. THICK LENGTH FINGERS/STRIP													TAPE			
11-78R2-XX-16	0.13	3.30	0.78	19.81	0.20	5.08	0.140	3.56	0.187	4.75	0.005	0.127	16	406	86	NO


XX - Select material/finish (see page 6)

CONTACT SERIES CONT.


mm

nnn

TTTT

.200

XX - Select material/finish (see page 6)

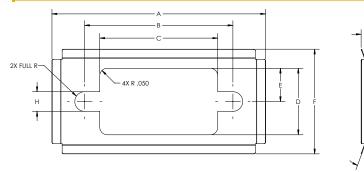
8-92RB Cor														ck = ir	nches Blue	= mm		
PART NUMBER								D	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
8-92RB-XX-16	0.09	2.29	0.92	23.37	0.30	7.62	0.61	15.49	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	NO

XX - Select material/finish (see page 6)

																		.0
8-92RC Co	ntact	Serie	s												Bla	ck = ir	nches Blue	= mm
PART NUMBER	A	١	I	B	(:	I	2	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
8-92RC-XX-16	0.09	2.29	0.92	23.37	0.30	7.62	0.63	16.00	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	NO

XX - Select material/finish (see page 6)

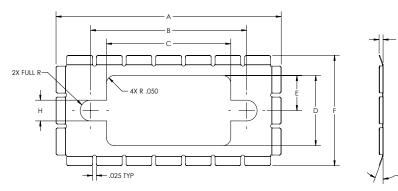
11-89RA Co	ontac	t Seri	es												Bla	ck = ir	ches Blue :	= mm
PART NUMBER	ļ	١		B	C D FINGER PITCH MAT. THI										LEN	GTH	FINGERS/ STRIP	TAPE
11-89RA-XX-16	0.13	3.30	0.89	22.61	0.81	20.57	0.60	15.24	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	NO


XX - Select material/finish (see page 6)

22-77RR Co	ontac	t Seri	es						-						Bla	ck = ir	nches Blue =	= mm
PART NUMBER	ļ	٩	i	B	(0	1	D	FIN	GER	PIT	СН	MAT.	THICK	LEN	GTH	FINGERS/ STRIP	TAPE
22-77RR-XX-16	0.23	5.84	0.77	19.56	0.64	16.26	0.62	15.75	0.140	3.56	0.187	4.75	0.005	0.127	16	406	85	NO

Metal Shielding Gaskets

METAL D-SUBS


Standard Finish and Plating Options				
FINISH TYPE	SPECIFICATIONS	LEADER TECH FINISH CODE		
BRIGHT FINISH	As Heat Treated	BD (Standard)		
BRIGHT TIN	ASTM B-545	SN		
SATIN TIN/MATTE TIN	ASTM B-545	ST		
ELECTROLESS BRIGHT NICKEL ROHS	ASTM B 733	NI		

D-Sub Miniat	ure - Solid				•				•				Bla	ck = ir	nches	Blue =	= mm
PART NUMBER	TYPE		4		B	(C	I	D		E		F	(;	I	ł
09D-110-XX	9 Pin	1.41	35.81	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
09D-100-SS	9 Pin	1.41	35.81	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
15D-110-XX	15 Pin	1.74	44.20	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
15D-100-SS	15 Pin	1.74	44.20	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
25D-110-XX	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
25D-100-SS	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
37D-110-XX	37 Pin	2.93	74.42	2.50	63.50	2.29	58.17	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
37D-100-SS	37 Pin	2.93	74.42	2.50	63.50	2.29	58.17	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
50D-110-XX	50 Pin	2.84	72.14	2.41	61.21	2.11	53.59	0.55	13.97	0.28	7.11	0.80	20.32	0.025	0.63	0.24	6.10
50D-100-SS	50 Pin	2.84	72.14	2.41	61.21	2.11	53.59	0.55	13.97	0.28	7.11	0.80	20.32	0.025	0.63	0.24	6.10

20° TYP

TYF

XX - Denotes the availability of finish/plating options. See chart above. Example: 09D-110-BD SS - Denotes stainless steel.

D-Sub Miniature - Slotted							Bla	ck = ir	nches	Blue =	= mm						
PART NUMBER	TYPE	1	4	I	В	(C		D	I	E	I	F	0	;	H	4
09D-210-XX	9 Pin	1.41	35.81	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
09D-200-SS	9 Pin	1.41	35.81	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
15D-210-XX	15 Pin	1.74	44.20	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
15D-200-SS	15 Pin	1.74	44.20	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
25D-210-XX	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
25D-200-SS	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
37D-210-XX	37 Pin	2.93	74.42	2.50	63.50	2.29	58.17	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
37D-200-SS	37 Pin	2.93	74.42	2.50	63.50	2.29	58.17	0.44	11.18	0.22	5.59	0.69	17.53	0.025	0.63	0.13	3.30
50D-210-XX	50 Pin	2.84	72.14	2.41	61.21	2.11	53.59	0.55	13.97	0.28	7.11	0.80	20.32	0.025	0.63	0.24	6.10
50D-200-SS	50 Pin	2.84	72.14	2.41	61.21	2.11	53.59	0.55	13.97	0.28	7.11	0.80	20.32	0.025	0.63	0.24	6.10

XX - Denotes the availability of finish/plating options. See chart above. Example: 09D-210-BD SS - Denotes stainless steel. * For fabric option - See page 34.

THIN GAUGE CUSTOM MECHANICAL SPRINGS & STAMPINGS

For over 30 years, Leader Tech has been supplying customers with high quality precision custom prototypes, short run and high volume stampings. Our in-house tool & die design and build expertise, combined with our extensive manufacturing capabilities, allow us to manufacture custom precision components for many applications. Our expertise is not limited to just the stamping portion of the application but can include value added operations such as the addition of insulating materials, hardware and other required features. From prototype to high volume production runs, Leader Tech can meet your custom needs with the shortest and most reliable lead times in the industry.

From prototypes within days to long production runs, your Leader Tech Team is ready to assist you. Please call us at 813-855-6921 or email us at sales@leadertechinc.com with your requirements.

CONDUCTIVE ELASTOMER EMI SHIELDING GASKETS FOR ELECTRONIC ENCLOSURES

Leader Tech's complete line of TechSIL Conductive Elastomer compounds is QPL certification by the Defense Logistics Agency. This unrivaled commitment to excellence distinguishes our company as the only MIL-SPEC approved & certified manufacturer of all 12 conductive elastomer formulations. This prestigious designation authorizes us to formulate, extrude and mold conductive elastomers to stringent MIL-DTL-83528D specifications.

Leader Tech's high-performance TechSIL gaskets are manufactured using proprietary base formulations of silicone, fluorosilicone and EPDM rubber that are embedded with highly conductive fillers including: Silver, Silver/Copper, Silver/Aluminum, Silver/Nickel, Silver/Glass, and Nickel Coated Graphite. We offer numerous standard gasket profiles as well as unlimited variations of extruded, molded, sheet stock, and die-cut finishes.

TechSIL Conductive Elastomers provide engineers with a highly customizable gasketing solution that delivers a shielding effectiveness of up to 110 dB across wide temperature variations and environmental conditions. An onsite applications engineer is also available to help formulate materials to meet your custom requirements. To learn more about this product line and our capabilities, make sure to request or download the complete TechSIL Conductive Elastomer catalog from our website.

MATERIAL TYPES & PROFILES

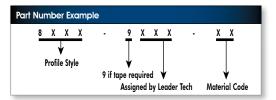
ORIENTED WIRE SERIES

Leader Tech's TechSIL 8000 **Oriented Wire** gasketing is designed for use in suppressing EMI/RFI up to 100 dB in the E-Field/up to 50 dB in the H-Field, while offering an effective environmental seal between mating surfaces. This material is comprised of monel or aluminum wire oriented perpendicular to the mating surfaces and embedded in solid or sponge silicone elastomer. The wires are crimped for additional resiliency and to optimize the mechanical performance of the gasket. The silicone based *TechSIL* has 700-900 wires per sq./ in. and is capable of withstanding temperatures from -80° to a maximum of 500° F (-62° to 260°C). TechSIL Oriented Wire materials are available in strip or sheet form and can easily be die cut into complex shapes or fabricated into custom frame gaskets. All *TechSIL* 8000 materials meet the DESC drawing 90046.

TechSIL® S	heet				I I
PART NUMBER	HEI	GHT	WI	DTH	<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
8100-0005-XX	0.032*	0.81	3.00	76.20	
8100-0010-XX	0.032*	0.81	4.50	114.30	
8100-0015-XX	0.032*	0.81	6.00	152.40	
8100-0020-XX	0.062	1.57	3.00	76.20	
8100-0025-XX	0.062	1.57	4.50	114.30	
8100-0030-XX	0.062	1.57	6.00	152.40	
8100-0035-XX	0.093	2.36	3.00	76.20	
8100-0040-XX	0.093	2.36	4.50	114.30	
8100-0045-XX	0.093	2.36	6.00	152.40	
8100-0050-XX	0.125	3.18	3.00	76.20	
8100-0055-XX	0.125	3.18	4.50	114.30	
8100-0060-XX	0.125	3.18	6.00	152.40	
8100-0065-XX	0.188	4.78	3.00	76.20	
8100-0070-XX	0.188	4.78	4.50	114.30	
8100-0075-XX	0.188	4.78	6.00	152.40	
8100-0080-XX	0.250	6.35	3.00	76.20	
8100-0085-XX	0.250	6.35	4.50	114.30	Black = inches
8100-0090-XX	0.250	6.35	6.00	152.40	Blue = mm

*0.032" thickness is only available in Silicone Solid

Material Code	Wire Specification	Elastomer
-81	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281	Silicone Sponge Per AMS 3195
-82	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281	Silicone Solid ZZR765, Class 2B, Grade 40
-83	Aluminum Wire - 0.005 Dia. (0.13) Alloy 5056	Silicone Sponge Per AMS 3195
-84	Aluminum Wire - 0.005 Dia. (0.13) Alloy 5056	Silicone Solid ZZR765, Class 2B, Grade 40


TechSIL® S	itrip			
PART NUMBER	HEI	GHT	WI	DTH
8200-0005-XX	0.062	1.57	0.093	2.36
8200-0010-XX	0.062	1.57	0.125	3.18
8200-0015-XX	0.062	1.57	0.188	4.78
8200-0020-XX	0.062	1.57	0.250	6.35
8200-0025-XX	0.062	1.57	0.375	9.53
8200-0030-XX	0.062	1.57	0.500	12.70
8200-0035-XX	0.093	2.36	0.093	2.36
8200-0040-XX	0.093	2.36	0.125	3.18
8200-0045-XX	0.093	2.36	0.188	4.78
8200-0050-XX	0.093	2.36	0.250	6.35
8200-0055-XX	0.093	2.36	0.375	9.53
8200-0060-XX	0.093	2.36	0.500	12.70
8200-0065-XX	0.125	3.18	0.125	3.18
8200-0070-XX	0.125	3.18	0.188	4.78
8200-0075-XX	0.125	3.18	0.250	6.35
8200-0080-XX	0.125	3.18	0.375	9.53
8200-0085-XX	0.125	3.18	0.500	12.70
8200-0090-XX	0.188	4.78	0.188	4.78
8200-0095-XX	0.188	4.78	0.250	6.35
8200-0100-XX	0.188	4.78	0.375	9.53
8200-0105-XX	0.188	4.78	0.500	12.70
8200-0110-XX	0.250	6.35	0.250	6.35
8200-0115-XX	0.250	6.35	0.375	9.53
8200-0120-XX	0.250	6.35	0.500	12.70

1	L L
W	- 1
100000	н
	+

Black = inches Blue = mm

All materials available with tape.

The data presented is accurate and true to our knowledge. Since applications, test methods and test procedures may vary, we recommend that users perform their own tests to assure suitability for specific applications. We offer no product warranty, either expressed or implied, except we will replace any product found to be defective.

Knitted Wire Series

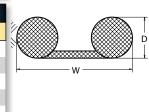
TECHMESH KNITTED WIRE

Leader Tech's TechMESH Knitted Wire gaskets are designed to provide EMI/RFI Shielding of joints and seams of electronic enclosures. The unique construction of the TechMESH Knitted Wire consists of many interlocking loops that act as small springs which provide for a resilient all-metal conductive gasket with high attenuation characteristics. TechMESH provides shielding effectiveness up to 130 dB in the E-Field and up to 80 dB in the H-Field. The standard wire materials are Tin Plated Copper Clad Steel, Monel and Aluminum in cross-sections of rectangular, round, round-with-fin, and double-round-with-fin. All cross-sections are available in both ALL Mesh or Elastomer Core configurations. The TechMESH Knitted Wire gaskets are supplied on spools of 25 ft. or cut to our customers specification.

D

Round All			
PART NUMBER	DIAN	IETER	
7000-0005-XX	0.062	1.57	
7000-0010-XX	0.093	2.36	
7000-0015-XX	0.125	3.18	
7000-0020-XX	0.156	3.96	
7000-0025-XX	0.188	4.78	
7000-0030-XX	0.250	6.35	
7000-0035-XX	0.312	7.92	
7000-0040-XX	0.375	9.53	Black = inche
7000-0055-XX	0.500	12.70	Blue = mm

Tape is not available.


ches

Additional wire options are available upon request

Rectangular	Rectangular All Mesh						
PART NUMBER	HEI	GHT	WI	DTH			
7200-0005-XX	0.062	1.57	0.062	1.57			
7200-0010-XX	0.062	1.57	0.125	3.18			
7200-0015-XX	0.062	1.57	0.250	6.35			
7200-0020-XX	0.093	2.36	0.093	2.36			
7200-0025-XX	0.093	2.36	0.125	3.18			
7200-0030-XX	0.093	2.36	0.250	6.35			
7200-0035-XX	0.125	3.18	0.125	3.18			
7200-0040-XX	0.125	3.18	0.250	6.35			
7200-0045-XX	0.125	3.18	0.500	12.70			
7200-0050-XX	0.188	4.78	0.188	4.78			
7200-0055-XX	0.188	4.78	0.500	12.70			
7200-0060-XX	0.250	6.35	0.250	6.35			
7200-0065-XX	0.250	6.35	0.500	12.70			

	1111. 	***		11.
•	– W ·		•	

Black = inches Blue = mm

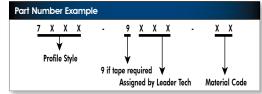
Round | All Mesh with Fin PART NUMBER DIAMETER WIDTH 7100-0005-XX 0.062 1.57 0.375 9.53 12.70 7100-0010-XX 0 500 0.062 7100-0015-XX 2.36 0.093 0.375 9.53 12.70 7100-0020-XX 2.36 0 093 0 500 7100-0025-XX 0 1 2 5 3.18 0.375 9.53 7100-0030-XX 0.125 3.18 0.500 12.70 7100-0035-XX 4.78 12.70 0.188 0.500 7100-0040-XX 0.188 4.78 0.750 19.05 7100-0045-XX 0.250 6.35 0.500 12.70 7100-0050-XX 0.250 6.35 0.750 19.05 7.92 7100-0055-XX 0.312 0.875 22.23 7100-0060-XX 0.375 0.750 19.05 7100-0065-XX 0.500 12.70 0.750 19.05

1	
11	j
\sim	×
4]],

È

Ī

Black = inches = mm


Tape is not available

26

Material Code	Wire Specification
-71	Tin Plated Copper Clad Steel - 0.0045 Dia. (0.10) ASTM-B-520
-72	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281
-73	Aluminum Wire - 0.005 Dia. (0.13) Alloy 5056, Per AMS-4182

Tape is not available.

Black = inches

Blue = mm

TECHMESH ELASTOMER CORE WIRE

Material Code	Wire Specification	Elastomer
-74	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Neoprene Sponge MIL-R-6130B, Type II, Grade A
-75	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Silicone Sponge Per AMS 3195
-76	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Silicone Solid Per ZZR765, Class 2B, Grade 40
-77	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Neoprene Sponge MIL-R-6130B, Type II, Grade A
-78	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Silicone Sponge Per AMS 3195
-79	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Silicone Solid Per ZZR765, Class 2B, Grade 40

Solid Elastomer Mesh						
PART NUMBER	DIAMETER					
7400-0005-XX	0.062	1.57				
7400-0010-XX	0.125	3.18				
7400-0015-XX	0.188	4.78				
7400-0020-XX	0.250	6.35				
7400-0025-XX	0.312	7.92				
7400-0030-XX	0.375	9.53				
7400-0035-XX	0.500	12.70				

Black = inches Blue = mm

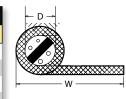
PART NUMBER	DIAN	DIAMETER					
7600-0005-XX	0.188	4.78					
7600-0010-XX	0.250	6.35					
7600-0015-XX	0.375	9.53					
7600-0020-XX	0.500	12.70					

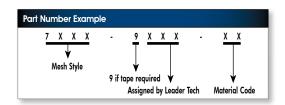
Tape is not available. Not available in -75 or -78 material

Black = inches Blue = mm

_	_	-	-	
Rectangular	Ela	stome	r Mes	h
PART NUMBER	HEI	WI	DT	
7500-0005-XX	0.125	3.18	0.125	
7500-0010-XX	0.125	3.18	0.188	
7500-0015-XX	0.125	3.18	0.250	
7500-0020-XX	0.188	4.78	0.188	
				L

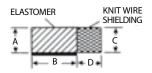
7500-0005-XX	0.125	3.18	0.125	3.18
7500-0010-XX	0.125	3.18	0.188	4.78
7500-0015-XX	0.125	3.18	0.250	6.35
7500-0020-XX	0.188	4.78	0.188	4.78
7500-0025-XX	0.250	6.35	0.250	6.35
7500-0030-XX	0.250	6.35	0.375	9.53
7500-0035-XX	0.250	6.35	0.500	12.70
7500-0040-XX	0.375	9.53	0.500	12.70
7500-0045-XX	0.500	12.70	0.500	12.70
7500-0050-XX	0.500	12.70	0.750	19.05

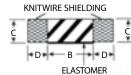

P-Bulb Elastomer Mesh								
PART NUMBER	DIAN	IETER	WIDTH					
7700-0005-XX	0.125	3.18	0.500	12.70				
7700-0010-XX	0.125	3.18	0.625	15.88				
7700-0015-XX	0.125	3.18	0.750	19.05				
7700-0020-XX	0.188	4.78	0.500	12.70				
7700-0025-XX	0.188	4.78	0.625	15.88				
7700-0030-XX	0.188	4.78	0.750	19.05				
7700-0035-XX	0.250	6.35	0.500	12.70				
7700-0040-XX	0.250	6.35	0.750	19.05				
7700-0045-XX	0.250	6.35	1.000	25.40				
7700-0050-XX	0.500	12.70	1.000	25.40				


WIDTH

Black = inches Blue = mm

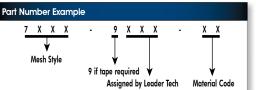
Black = inches Blue = mm


Knitted Wire Series


TECHMESH COMBO STRIP

Leader Tech's TechMesh Combo Strip & Gaskets are designed for use in applications requiring EMI/RFI shielding and environmental sealing. These materials are comprised of monel or tin plated copper clad steel knitted wire mesh which are bonded to neoprene sponge, silicone sponge or silicone solid elastomer strips. The wire mesh provides shielding performance up to 125 dB in the E-Field and up to 80 dB in the H-Field while the elastomer materials can withstand temperatures from -103° to a maximum of 500° F (-75° to 260°C). These materials have an optional pressure sensitive adhesive backing for ease of installation. The TechMesh Combo Strip & Gaskets are available in standard and custom strip configurations. Leader Tech can also fabricate custom frame gaskets to customers specification.

Additional wire options or metal compression stops are available upon request.



		ELAST	OMER			M	SH	
PART NUMBER	HEIG	HT (A)		TH (B)	HEIGI	IT (C)	WIDT	H (D)
7800-0005-XX	0.062	1.57	0.250	6.35	0.062	1.57	0.125	3.18
7800-0010-XX	0.062	1.57	0.375	9.53	0.062	1.57	0.125	3.18
7800-0015-XX	0.062	1.57	0.500	12.70	0.062	1.57	0.125	3.18
7800-0020-XX	0.093	2.36	0.250	6.35	0.093	2.36	0.125	3.18
7800-0025-XX	0.093	2.36	0.375	9.53	0.093	2.36	0.125	3.18
7800-0030-XX	0.093	2.36	0.500	12.70	0.093	2.36	0.125	3.18
7800-0035-XX	0.125	3.18	0.250	6.35	0.125	3.18	0.125	3.18
7800-0040-XX	0.125	3.18	0.375	9.53	0.125	3.18	0.125	3.18
7800-0045-XX	0.125	3.18	0.500	12.70	0.125	3.18	0.125	3.18
7800-0050-XX	0.125	3.18	0.750	19.05	0.125	3.18	0.125	3.18
7800-0055-XX	0.188	4.78	0.375	9.53	0.188	4.78	0.125	3.18
7800-0060-XX	0.188	4.78	0.500	12.70	0.188	4.78	0.125	3.18
7800-0065-XX	0.188	4.78	0.750	19.05	0.188	4.78	0.125	3.18
7800-0070-XX	0.250	6.35	0.500	12.70	0.250	6.35	0.125	3.18
7800-0075-XX	0.250	6.35	0.750	19.05	0.250	6.35	0.125	3.18

Black = inches

Blue = mm

Double Mesh Combo Gasket									
PART NUMBER		ELAST	OMER			ME	SH		
PART NUMBER	HEIGHT (A)		WIDT	'H (B)	HEIGI	HT (C)	WIDT	H (D)	
7900-0005-XX	0.062	1.57	0.250	6.35	0.062	1.57	0.125	3.18	
7900-0010-XX	0.062	1.57	0.500	12.70	0.062	1.57	0.125	3.18	
7900-0015-XX	0.093	2.36	0.250	6.35	0.093	2.36	0.125	3.18	
7900-0020-XX	0.093	2.36	0.500	12.70	0.093	2.36	0.125	3.18	
7900-0025-XX	0.125	3.18	0.250	6.35	0.125	3.18	0.125	3.18	
7900-0030-XX	0.125	3.18	0.375	9.53	0.125	3.18	0.125	3.18	
7900-0035-XX	0.125	3.18	0.500	12.70	0.125	3.18	0.125	3.18	
7900-0040-XX	0.188	4.78	0.250	6.35	0.188	4.78	0.125	3.18	
7900-0045-XX	0.188	4.78	0.500	12.70	0.188	4.78	0.125	3.18	

Black = inchesBlue = mm

Material Code	Wire Specification	Elastomer
-74	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Neoprene Sponge MIL-R-6130B, Type II, Grade A
-75	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Silicone Sponge Per AMS 3195
-76	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281B	Silicone Solid Per ZZR765, Class 2B, Grade 40
-77	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Neoprene Sponge MIL-R-6130B, Type II, Grade A
-78	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Silicone Sponge Per AMS 3195
-79	Tin Plated Copper Clad Steel 0.0045 Dia. (0.10) ASTM-B-520	Silicone Solid Per ZZR765, Class 2B, Grade 40

The data presented is accurate and true to our knowledge. Since applications, test methods and test procedures may vary, we recommend that users perform their own tests to assure suitability for specific applications. We offer no product warranty, either expressed or implied, except we will replace any product found to be defective.

TECHMESH TAPE

Leader Tech's TechMESH Tape has double layered strip of knitted wire mesh to provide effective EMI shielding and grounding for electric and electronic cable assemblies. This is particularly useful in applications where the need for EMI protection is determined after the cable assembly is complete and standard braided shielded cable cannot be used. The flexible structure of Leader TechMESH Tape permits it to conform to irregular surfaces and the cable contours during the wrapping process. TechMESH Tape is 0.020" (0,51mm) thick. It is available in tin plated copper clad steel (-71) or Monel (-72) width 10-12 openings per inch.

Performance Advantages

- Tin plated for excellent solderability
- Useful in both shielding and grounding applications for static discharge
 Tin plated copper clad steel wire provides greater strength and
- performance than other mesh tape materialsKnit loop structure provides uniform coverage minimizing wrinkles and
- creases
- Available in other alloys and wire dimensions
- Supplied in 50 ft. (15,2mm) rolls (Note: When determining quantity needed, 50% overlap is recommended)

6000 Tape									
PART NUMBER	WIDTH								
6000-0025-XX	0.250 +/- 0.40 6.4 +/- 1.0								
6000-0038-XX	0.380+/-0.40	9.7 +/- 1.0							
6000-0050-XX	0.500+/-0.60	12.7 +/- 1.5							
6000-0075-XX	0.750+/-0.60	19.1 +/- 24.4							
6000-0100-XX	1.00+/-0.60	25.4 +/- 1.5							
6000-0150-XX	1.50+/-0.120	38.1 +/- 3.1							
6000-0175-XX	1.75+/-0.120	44.5 +/- 3.1							
6000-0225-XX	2.25+/-0.120	57.2 +/-4.8							

Black = inches Blue = mm

6000 Tape	
MATERIAL CODE	WIRE SPECIFICATION
-71	Tin Plated Copper Clad Steel - 0.0045 Dia. (0.10) ASTM-B-520
-72	Monel Wire - 0.0045 Dia. (0.10) Per QQ-N-281

Part Number Explanation													
	6	0	0	0		X	X	x ▼	X		X	X	
	Pr	ofile	sty	le	Select Size from chart above				Mate	erial Code	(

Fabric Shielding Gaskets

TECHNICAL DATA

Shielding gaskets are, very simply, connectors of two opposing metallic planes which make them appear as one continuous surface, by connecting across the openings. Depending on the frequencies involved, the openings must be reduced as closely as possible to a continuous seal.

Leader Tech's unique Fabric Shielding Gasket structure is a combination of a highly conductive nickel/copper ripstop fabric and a resilient polyurethane foam core. Leader Tech's FSG products have superior shielding properties and ensure long performance life all in a cost effective manner.

Leader Tech (FSG):

Fabric: Nickel/Copper RipStopFoam: Open Cell PolyurethaneCompression Set: <15% (ASTM D3574)</th>Temperature Range: -40°F to 158°F (-40°C to 70°C) (ASTM D746)Surface Resistivity: ≤0.050 Ω/inch² (ASTM F390)Flammability Rating: UL94V0Shielding Effectiveness: >Up to 105 dB (MIL-DTL-83528C)Pressure Sensitive Adhesive: Non-conductive, high peel strengthROHS: Compliant

REACH: Compliant

SHELF LIFE: If stored properly, product retains its performance and properties fo 24 months from date of manufacture. (It is suggested that products are stored at room temperature conditions of 70°F (21°C) and 50% relative humidity.)

Tolerances:

TYPICAL CROSS SECTION TOLERANCES

±.010 in. (0.25 mm) for all dimensions up to 0.04 in. (1.02 mm) ±.020 in. (0.50 mm) for all dimensions above 0.04 in. (1.02 mm) (Detailed part drawings are available upon request)

*Other sizes available. Consult factory.

Shelf-life is based on the pressure sensitive adhesive which is 24 months

TYPICAL LENGTH TOLERANCES

0.20 to 6.00 in.	(5 - 152 mm)	±.03 in.	(0.76 mm)
6.01 to 18.00 in.	(153 - 457 mm)	±.06 in.	(1.52 mm)
18.01 to 48.00 in.	(458 - 1219 mm)	±.08 in.	(2.03 mm)

FSG FOR ELECTRONIC ENCLOSURES

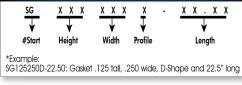
Square Shape							
PART NUMBER	HEIGHT		WI	DTH	LENGTH		
SG080080S	0.080	2.03	0.080	2.03	48	1219	
SG118118S	0.118	3.00	0.118	3.00	48	1219	
SG138138S	0.138	3.54	0.138	3.54	48	1219	
SG160160S	0.160	4.06	0.160	4.06	48	1219	
SG200200S	0.200	5.08	0.200	5.08	48	1219	
SG250250S	0.250	6.35	0.250	6.35	48	1219	
SG315315S	0.315	8.00	0.315	8.00	48	1219	
SG354354S	0.354	8.99	0.354	8.99	48	1219	
SG375375S	0.375	9.52	0.375	9.52	48	1219	
SG472472S	0.472	11.99	0.472	11.99	48	1219	
SG500500S	0.500	12.70	0.500	12.70	48	1219	
SG512512S	0.512	13.00	0.512	13.00	48	1219	
\$G551551\$	0.551	14.00	0.551	14.00	48	1219	
SG575575S	0.575	14.60	0.575	14.60	48	1219	
SG591591S	0.591	15.01	0.591	15.01	48	1219	
SG670670S	0.670	17.02	0.670	17.02	48	1219	
SG787787S	0.787	19.99	0.787	19.99	48	1219	

← w →	
	1
	Ĥ
	¥

Bell Shape						
PART NUMBER	HEI	SHT	wi	TH	LEN	GTH
SG070180B	0.070	1.78	0.180	4.57	48	1219
SG090315B	0.090	2.29	0.315	8.00	48	1219
SG098299B	0.098	2.49	0.299	7.59	48	1219
SG100300B	0.100	2.54	0.300	7.62	48	1219
SG130256B	0.130	3.30	0.256	6.50	48	1219
SG157500B	0.157	3.99	0.500	12.70	48	1219
SG200500B	0.200	5.08	0.500	12.70	48	1219

Black = inches Blue = mm

T-Shape						
PART NUMBER	HEI	SHT	wi	OTH	LEN	GTH
SG152235T	0.152	3.86	0.235	5.97	48	1219
SG157245T	0.157	3.99	0.245	6.22	48	1219
SG175244T	0.175	4.44	0.244	6.20	48	1219
SG244244T	0.244	6.20	0.244	6.20	48	1219


Typical Performance

Shielding Effectiveness 80 - 115dB

Frequency Range 20Mhz - 10GHz

Dura-Layer Construction Polyurethane foam core with high-performance fabric

Recommended Compression 30-50% of gasket height

Black = inches Blue = mm

C-Shape							
PART NUMBER	HEIGHT		WI	DTH	LENGTH		
SG196325C	0.196	4.98	0.325	8.25	48	1219	
SG196535C	0.196	4.98	0.535	13.59	48	1219	
SG240415C	0.240	6.10	0.415	10.54	48	1219	
SG252280C	0.252	6.40	0.280	7.11	48	1219	
SG315315C	0.315	8.00	0.315	8.00	48	1219	
SG347685C	0.347	8.81	0.685	17.40	48	1219	
SG380420C	0.380	9.65	0.420	10.67	48	1219	
SG385420C	0.385	9.78	0.420	10.67	48	1219	
SG465420C	0.465	11.811	0.420	10.67	48	1219	
SG550590C	0.550	13.97	0.590	14.99	48	1219	
SG675580C	0.675	17.14	0.580	14.73	48	1219	
SG675600C	0.675	17.14	0.600	15.24	48	1219	

	Typical Cross Section Tol	erances					
±.010 in.	(0.25 mm) for all dimensions up to	0.04 in.	(1.02 mm)				
$\pm .020$ in.	(0.50 mm) for all dimensions above	0.04 in.	(1.02 mm)				
	Detailed part drawings are available upon request.						
	Typical Length Tolera	nces					
0.20 to 6.0	0 in. (5 - 152 mm)	±.03 in.	(0.76 mm)				
6.01 to 18.0	00 in. (153 - 457 mm)	±.06 in.	(1.52 mm)				
18.01 to 48.	00 in. (458 - 1219 mm)	±.08 in.	(2.03 mm)				

Black = inches Blue = mm

FSG FOR ELECTRONIC ENCLOSURES CONT.

Rectangle Shape								
PART NUMBER	HEI	GHT	WI	OTH	LENGTH			
SG020157R	0.020	0.51	0.157	3.99	48	1219		
SG020197R	0.020	0.51	0.197	5.00	48	1219		
SG020275R	0.020	0.51	0.275	6.98	48	1219		
SG0391181R	0.039	0.99	1.181	30.00	48	1219		
SG039118R	0.039	0.99	0.118	3.00	48	1219		
SG040125R	0.040	1.02	0.125	3.17	48	1219		
SG0401850R	0.040	1.02	1.850	46.99	48	1219		
SG040200R	0.040	1.02	0.200	5.08	48	1219		
SG040275R	0.040	1.02	0.275	6.98	48	1219		
SG040395R	0.040	1.02	0.395	10.03	48	1219		
SG040590R	0.040	1.02	0.590	14.99	48	1219		
SG040710R	0.040	1.02	0.710	18.03	48	1219		
SG050090R	0.050	1.27	0.090	2.29	48	1219		
SG051157R	0.051	1.30	0.157	3.99	48	1219		
SG051394R	0.051	1.30	0.394	10.01	48	1219		
SG060100R	0.060	1.52	0.100	2.54	48	1219		
SG060125R	0.060	1.52	0.125	3.17	48	1219		
SG060130R	0.060	1.52	0.130	3.30	48	1219		
SG060160R	0.060	1.52	0.160	4.06	48	1219		
SG060200R	0.060	1.52	0.200	5.08	48	1219		
SG060280R	0.060	1.52	0.280	7.11	48	1219		
SG060394R	0.060	1.52	0.394	10.01	48	1219		
SG060395R	0.060	1.52	0.395	10.03	48	1219		
SG060750R	0.060	1.52	0.750	19.05	48	1219		
SG079157R	0.079	2.00	0.157	3.99	48	1219		
SG0801000R	0.080	2.03	1.000	25.40	48	1219		
SG080100R	0.080	2.03	0.100	2.54	48	1219		
SG080160R	0.080	2.03	0.160	4.06	48	1219		
SG080200R	0.080	2.03	0.200	5.08	48	1219		
SG080500R	0.080	2.03	0.500	12.70	48	1219		
SG080750R	0.080	2.03	0.750	19.05	48	1219		
SG100200R	0.100	2.54	0.200	5.08	48	1219		
SG118118R	0.118	3.00	0.118	3.00	48	1219		
SG120155R	0.120	3.05	0.155	3.94	48	1219		
SG125250R	0.125	3.17	0.250	6.35	48	1219		
SG125375R	0.125	3.17	0.375	9.52	48	1219		
SG140250R	0.140	3.56	0.250	6.35	48	1219		

Typical Cross Section Tolerances								
$\pm.010$ in.	(0.25 mm) for al	dimensions up to	0.04 in.	(1.02 mm)				
$\pm.020$ in.	(0.50 mm) for a	l dimensions above	0.04 in.	(1.02 mm)				
Detailed part drawings are available upon request.								
	Typical Le	ngth Toleran	ces					
0.20 to 6.00 in.		(5 - 152 mm)	±.03 in.	(0.76 mm)				
6.01 to 18.00 in.		(153 - 457 mm)	$\pm .06$ in.	(1.52 mm)				
18.01 to 4	8.00 in.	(458 - 1219 mm)	±.08 in.	(2.03 mm)				

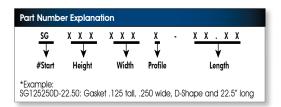
←	

Rectangle Shape cont.							
PART NUMBER	HEI	GHT WIDTH		LENGTH			
SG157590R	0.157	3.99	0.590	14.99	48	1219	
SG160354R	0.160	4.06	0.354	8.99	48	1219	
SG250375R	0.250	6.35	0.375	9.52	48	1219	
SG250500R	0.250	6.35	0.500	12.70	48	1219	
SG250600R	0.250	6.35	0.600	15.24	48	1219	
SG187375R	0.187	4.75	0.375	9.52	48	1219	
SG187750R	0.187	4.75	0.750	19.05	48	1219	
SG197315R	0.197	5.00	0.315	8.00	48	1219	
SG200200R	0.200	5.08	0.200	5.08	48	1219	
SG250250R	0.250	6.35	0.250	6.35	48	1219	
SG375500R	0.375	9.52	0.500	12.70	48	1219	
SG500500R	0.500	12.70	0.500	12.70	48	1219	
SG500750R	0.500	12.70	0.750	19.05	48	1219	
SG670670R	0.670	17.02	0.670	17.02	48	1219	
SG787787R	0.787	19.99	0.787	19.99	48	1219	

Black = inches Blue = mm

Knife Edge						
PART NUMBER	HEI	GHT	WI	DTH	LEN	GTH
SG070340K	0.070	1.78	0.340	8.64	48	1219
SG106315K	0.106	2.69	0.315	8.00	48	1219
SG106445K	0.106	2.69	0.445	11.30	48	1219
SG106455K	0.106	2.69	0.455	11.56	48	1219
SG-160600K	0.106	2.69	0.600	15.24	48	1219
SG187236K	0.187	4.75	0.236	5.99	48	1219
SG250750K	0.250	6.35	0.750	19.05	48	1219
SG312707K	0.312	7.92	0.270	6.86	48	1219
SG350750K	0.350	8.89	0.750	19.05	48	1219

-	¥
CT 2 STA	н
<w></w>	1


Black = inches Blue = mm

Round Shap	e			
PART NUMBER	DIAN	IETER	LEN	GTH
SG100100Z	0.100	2.54	48	1219
SG125125Z	0.125	3.17	48	1219
SG160160Z	0.160	4.06	48	1219
SG200200Z	0.200	5.08	48	1219

Tape is not available.

Black = inches Blue = mm

Black = inches

Blue = mm

FSG FOR ELECTRONIC ENCLOSURES CONT.

D-Shape						
PART NUMBER	HEI	GHT	WI	OTH	LEN	GTH
SG040150D	0.040	1.02	0.150	3.81	48	1219
SG040200D	0.040	1.02	0.200	5.08	48	1219
SG050140D	0.050	1.27	0.140	3.56	48	1219
SG050250D	0.050	1.27	0.250	6.35	48	1219
SG060125D	0.060	1.52	0.125	3.17	48	1219
SG060150D	0.060	1.52	0.150	3.81	48	1219
SG060250D	0.060	1.52	0.250	6.35	48	1219
SG070135D	0.070	1.78	0.135	3.43	48	1219
SG70180D	0.070	1.78	0.180	4.57	48	1219
SG080080D	0.080	2.03	0.080	2.03	48	1219
SG080160D	0.080	2.03	0.160	4.06	48	1219
SG080394D	0.080	2.03	0.394	10.01	48	1219
SG090090D	0.090	2.29	0.090	2.29	48	1219
SG090150D	0.090	2.29	0.150	3.81	48	1219
SG094200D	0.094	2.39	0.200	5.08	48	1219
SG100300D	0.100	2.54	0.300	7.62	48	1219
SG110180D	0.110	2.79	0.180	4.57	48	1219
SG120150D	0.120	3.05	0.150	3.81	48	1219
SG120250D	0.120	3.05	0.250	6.35	48	1219
SG120360D	0.120	3.05	0.360	9.14	48	1219
SG120475D	0.120	3.05	0.475	12.06	48	1219
SG125187D	0.125	3.17	0.187	4.75	48	1219
SG125250D	0.125	3.17	0.250	6.35	48	1219
SG130190D	0.130	3.30	0.190	4.83	48	1219
SG140250D	0.140	3.56	0.250	6.35	48	1219
SG150250D	0.150	3.81	0.250	6.35	48	1219
SG160240D	0.160	4.06	0.240	6.10	48	1219
SG180400D	0.180	4.57	0.400	10.16	48	1219
SG187250D	0.187	4.75	0.250	6.35	48	1219
SG195260D	0.195	4.95	0.260	6.60	48	1219
SG236236D	0.236	5.99	0.236	5.99	48	1219
SG250375D	0.250	6.35	0.375	9.52	48	1219
SG295355D	0.295	7.49	0.355	9.02	48	1219
SG315630D	0.315	8.00	0.630	16.00	48	1219
SG375500D	0.375	9.52	0.500	12.70	48	1219
SG430500D	0.430	10.92	0.500	12.70	48	1219
SG562709D	0.562	14.27	0.709	18.00	48	1219
SG670670D	0.670	17.02	0.670	17.02	48	1219

Typical Cross Section Tolerances

Detailed part drawings are available upon request. Typical Length Tolerances (5 - 152 mm)

(0.50 mm) for all dimensions above 0.04 in.

(153 - 457 mm)

(458 - 1219 mm) ±.08 in.

0.04 in.

 $\pm.03$ in.

±.06 in.

(1.02 mm)

(1.02 mm)

(0.76 mm)

(1.52 mm)

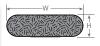
(2.03 mm)

(0.25 mm) for all dimensions up to

 $\pm .010$ in.

 $\pm .020$ in.

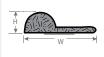
0.20 to 6.00 in.


6.01 to 18.00 in.

18.01 to 48.00 in.

Black = inchesBlue = mm

Oval Shape						
PART NUMBER	HEI	SHT	WI	OTH	LEN	GTH
SG140200E	0.140	3.56	0.200	5.08	48	1219
SG160790E	0.160	4.06	0.790	20.07	48	1219



Black = inches Blue = mm

Triangle Sha	ре					
PART NUMBER	HEI	SHT	wi	DTH	LEN	GTH
SG098500TR	0.098	2.49	0.500	12.70	48	1219
SG090394TR	0.090	2.29	0.394	10.01	48	1219
SG100400TR	0.100	2.54	0.400	10.16	48	1219
SG140390TR	0.140	3.56	0.390	9.91	48	1219

Black = inches Blue = mm

P-Shape						
PART NUMBER	HEI	GHT	WIE	OTH	LEN	GTH
SG016195P	0.016	0.41	0.195	4.95	48	1219
SG060275P	0.060	1.52	0.275	6.98	48	1219
SG080200P	0.080	2.03	0.200	5.08	48	1219
SG125750P	0.125	3.17	0.750	19.05	48	1219
SG130520P	0.130	3.30	0.520	13.20	48	1219
SG145520P	0.145	3.68	0.520	13.21	48	1219
SG200395P	0.200	5.08	0.395	10.03	48	1219

Black = inches Blue = mm

Typical Performance

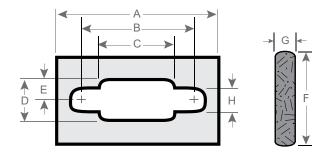
Shielding Effectiveness 80 - 115dB

Frequency Range 20Mhz - 10GHz

Dura-Layer Construction Polyurethane foam core with high-performance fabric

Recommended Compression 30-50% of gasket height

Part Numbe	er Explanati	on		
SG	ххх	<u>x x x</u>	X	- <u>x x . x x</u>
¥ #Start	∀ Height	∀ Width	¥ Profile	¥ Length
*Example: SG125250D-2	22.50: Gaske	t .125 tall, .:	250 wide,	, D-Shape and 22.5" long


Fabric Shielding Gaskets

FSG FOR ELECTRONIC ENCLOSURES CONT.

D-SUB MINIATURE

very conformable to irregular surfaces.

- Eliminates any gap problem between connector and I/O surface plates. Compresses from .100" to .025" (2.5 to 0.6mm)
- Outside conductive surface is metalized CuNi fabric
- 9, 15, 25, 37 and 50 pin connector gaskets available in stock
- Available with adhesive tape. Please consult factory for ordering information
- Consult factory for custom profiles, thicknesses and sizes available
- For metal option see page 22

D-Sub Miniat	ure																
PART NUMBER	TYPE		4	1	В	(2	I	2	I			F	(÷	I	н
SG140009DS	9 Pin	1.40	35.56	0.98	24.89	0.78	19.81	0.44	11.18	0.22	5.59	0.7	17.78	0.1	2.54	0.15	3.81
SG175015DS	15 Pin	1.75	44.45	1.31	33.27	1.11	28.19	0.44	11.18	0.22	5.59	0.7	17.78	0.1	2.54	0.15	3.81
SG228025DS	25 Pin	2.28	57.91	1.85	46.99	1.65	41.91	0.44	11.18	0.22	5.59	0.7	17.78	0.1	2.54	0.15	3.81
SG293037DS	37 Pin	2.93	74.42	2.50	63.54	2.29	58.17	0.44	11.18	0.22	5.59	0.7	17.78	0.1	2.54	0.15	3.81
SG284050DS	50 Pin	2.84	72.14	2.41	61.21	2.20	55.88	0.55	13.97	0.28	7.11	0.8	20.32	0.1	2.54	0.15	3.81

Black = inches Blue = mm

Typical Performance

Shielding Effectiveness 80 - 115dB

Frequency Range 20Mhz - 10GHz

34

Dura-Layer Construction Polyurethane foam core with high-performance fabric

Recommended Compression 30-50% of gasket height

Typical Cross	Section Tole	ances	
\pm .010 in. (0.25 mm) for al	l dimensions up to	0.04 in.	(1.02 mm)
· · ·	ll dimensions above Igs are available upon	0.04 in. request.	(1.02 mm)
Typical Le	ngth Toleran	ces	
0.20 to 6.00 in.	(5 - 152 mm)	±.03 in.	(0.76 mm)
6.01 to 18.00 in.	(153 - 457 mm)	$\pm .06$ in.	(1.52 mm)
	(458 - 1219 mm)	±.08 in.	(2.03 mm)

SHIELDING FABRICS & CONDUCTIVE TAPES

Shielding Fabrics

Shielding effectiveness is determined by a combination of the reflection and absorption of RF signals. Absorption depends on the thickness of the shield material. However, reflection occurs at the shield surface and its effectiveness is independent of thickness. Reflection is the determining factor for all high frequency signal attenuation. (Note: When using these materials for conductive shielding gaskets, conductivity is the determinant.) Maximum reflection occurs with the highest conductivity materials the best being copper, nickel and combinations of both.

Applications

Bonding or laminating to complex geometric shapes with optional hot melt or conductive adhesive.

- Large surface coverage with minimal seams due to 41" material width
- ESD/RFI-EMI shielding attenuation > 70dB up to 10 GHz for CuNi type
- Seal enclosure panels and frames, seams or joints
- Use for architectural shielding or shielded room wall and ceiling finishing

Options

- All materials are available in non-adhesive, hot melt or conductive adhesive backing
- Standard sheets are 41" x 36" (1041 x 914 mm)
- Longer lengths can be custom ordered please consult factory for information
- Full rolls are 325' (99M) long please consult factory for ordering information. Note: conductive adhesive versions are 164' (50M) long

Shielding Fab	rics													
PART NUMBER W/O ADHESIVE	W/HOT MELT ADHESIVE	W/CONDUCTIVE ADHESIVE	DESCRIPTION	WI	DTH	LEN	GTH	THIC	(NESS	SURFACE RESISTIVITY	500KHZ	100MHZ	300MHZ	1 GHZ
SF005PCN	SF005PCN-HM	SF005PCN-CA	Conductive CuNi Cloth	41	1041	36	914	0.003	0.076	.005 ohm/mm2	79dB	81dB	86dB	82dB
SF030PCU	SF030PCU-HM	SF030PCU-CA	Conductive Cu Cloth	41	1041	36	914	0.003	0.076	.035 ohm/mm2	60dB	67dB	65dB	62dB
SF050PNI	SF050PNI-HM	SF050PNI-CA	Conductive Ni Cloth	41	1041	36	914	0.004	0.102	.050 ohm/mm2	60dB	72dB	67dB	63dB

Black = inches Blue = mm

Fabric Shielding Tapes **Applications**

Cable shielding, enclosure seams, shielded room joints, PCB component shields, irregular surface/component shields, alternative to custom die-cut shielding gaskets or sections.

- Service Temperature: -40°F to 212°F (-40°C to 100°C)
- Adhesion: (peel) 50 oz/in. (54N/100mm)
- Material: CuNi metalized fabric and conductive acrylic adhesive backing w/release liner

Fabric Shieldi	ng Tc	ıpes						
PART NUMBER	WI	DTH	THIC	KNESS	LENGTH		RESISTIVITY	IMPEDANCE
ST005PCN25	0.25	6.35	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz
ST005PCN50	0.50	12.70	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz
ST005PCN75	0.75	19.05	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz
ST005PCN100	1.00	25.40	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz
ST005PCN200	2.00	50.80	0.005	0.13	85.0 ft. rolls	25.0m	0.03 - 0.05 ohms/inch	69dB@100MHz

CFS CONDUCTIVE FOAM SHIELDING MATERIAL FOR DIE-CUT GASKETS

CFS Conductive Foam Shielding Material consists of resilient Nickel-Copper polyurethane foam which is layered between two pieces of conductive polyester fabric. This CFS Conductive Foam is ideal for applications that require low compression forces but excellent shielding effectiveness.

Performance

Operating Temperatures: -40F - +156F (-40C - +70C) Surface Resistivity: <0.2 ohms/sq Shielding Effectiveness: 60dB Typical 10MHz - 3GHz Flammability: UL94-HBF Unless otherwise noted UL94-V1* Typical Compression Load: 2.1 PSI at recommended 30% compression

Availability

Sheets: Up to 1.0m x 1.0m (*Custom Sizes Available*) Finishing: Precision Die-Cut Forms & Shapes Available with Conductive Adhesive

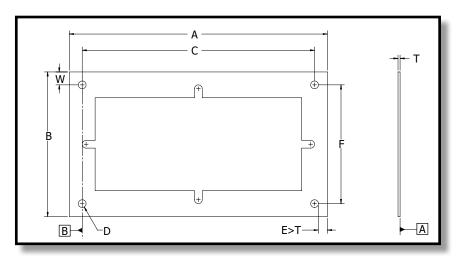
Material Characteristics

High Shielding Effectiveness Low Compression Low Surface Resistivity

Applications

Intricate die cuts forms I/O panels Backplanes Connectors Access panels

CFS Conductive Foam Shielding Material				
PART NUMBER	STD SHEET SIZE	ADHESIVE		
CFS1919060-NTP	19 X 19 X .060	NO		
CFS1919060	19 X 19 X .060	YES		
CFS1919098-NTP	19 X 19 X .098	NO		
CFS1919098	19 X 19 X .098	YES		
CFS1919138-NTP	19 X 19 X .138	NO		
CFS1919138	19 X 19 X .138	YES		
CFS2222060-V1-NTP*	22 X 22 X .060	NO		
CFS2222060	22 X 22 X .060	YES		


*Other sizes available. Consult Applications Engineering. Custom and Die-Cut Gaskets

CUSTOM AND DIE-CUT SHIELDING GASKETS

In addition to our large assortment of stock products, Leader Tech offers customers the ability to create custom and die-cut shielding gaskets using any of our conductive elastomer formulations or fabric shielding gasket materials. Our extensive manufacturing capabilities include extrusion, molding and precision die-cut shapes and sizes.

All of our high-performance custom shielding gaskets can be made from your choice of twelve MIL-DTL-83528 Conductive Elastomer compounds or from our Fabric Shielding Gasket material. Depending on your unique application requirements, our engineering team will work to develop a custom gasketing solution that exhibits superior shielding properties and ensures a long performance life in a cost effective manner.

Please review your application with our Material Specialist and Engineering Group to determine the best materials to use for your application.

Die Cut Gasket Design Recommendations and Tolerances

Tolerance Range				
FEATURE TYPE	Sample Dim.	0 - 4"	4.1 - 12"	12.1 - 24"
Length/Width	A, B, W	+/020	+/030	+/040
Hole Location	C, F	+/010	+/015	+/020
Hole Diameter	D	+/020	+/030	+/040

NOTES:

- 1. Minimum recommended flange width (W) is .125".
- 2. Hole diameter (D) must exceed material thickness (T).
- Distance edge of hole to edge of gasket (E) must exceed material thickness (T).
 - If not possible, then a slot is required.
- Recommend assign datum to hole C/L and not to edge of gasket.

ENGINEERS NOTES

PRODUCTS AND LITERATURE

We've Got You Covered

Reliable Board, Enclosure and Cable Shielding Solutions

Leader Tech is a world-leading innovator and US-based manufacturer of EMI shielding products for circuit boards, enclosures and cables. In addition to our best selling standard, modified standard and custom CBS shields, Leader Tech offers an expansive line of beryllium copper fingerstock gaskets, conductive elastomers, advanced RF absorber materials and EMI/RFI ferrites.

CBS Circuit Board ShieldingCatalog

- FerriShield Ferrite Catalog
- TechSIL Conductive Elastomer Catalog

LeaderTech Shielding Products

Board Level Shielding

- Standard and Multi-Cavity CBS
- Modified Standard Options
- Custom Circuit Board Shields

FerriShield Ferrites

- Snap-On Bisected & Solid Bead Ferrites
- Round & Flat Styles for Cables, Wires and Flex Circuits
- Low, High, Microwave and Wideband Frequency-Specific Material

Enclosure Shielding

- BeCu Fingerstock Gaskets
- TechSIL 5000 Conductive Elastomers
- Conductive Fabric Shielding Gaskets
- TechSIL 8000 Oriented Wire Gaskets
- TechMESH Knitted Wire Gaskets
- TechMESH Combo Strip & Gaskets

Our sales engineers are waiting for your call: 866-TECH-EMI (866-832-4364)

Visit our web site today to browse our complete product line, download literature and find your local sales engineer or sales representative! www.leadertechinc.com

WWW.LEADERTECHINC.COM

A passion in all we do

ISO 9001: 2008 WRoHS

12420 Race Track Rd., Tampa, Florida 33626 866.TECH.EMI (866.832.4364) t 813.855.6921 f 813.855.3291 0421