Photologic® Slotted Optical Switch
 OPB460, OPB470, OPB480, OPB490 Series

Features:

- Choice of pins or wires mounting configuration
- Choice of aperture
- Choice of output configuration
- Choice of opaque or IR transmissive shell material
- Data rates to 250 kBaud
- Low power consumption

Description:

The OPB460, OPB470, OPB480 and OPB490 series of Photologic ${ }^{\circledR}$ photo integrated circuit switches provide optimum flexibility for the design engineer. Building from a standard housing with a $0.125^{\prime \prime}$ (3.180 mm) wide slot, a user can specify the type and polarity of TTL output, discrete shell material, aperture width and choice of mounting configurations. OPB460 through OPB473 have $0.425^{\prime \prime}(10.795 \mathrm{~mm})$ PCBoard leads with $0.320^{\prime \prime}(8.1 \mathrm{~mm})$ spacing. OPB480 through OPB493 have 24" (609 mm) 26 AWG wires (UL approved wires).

All devices in this series exhibit performance over supply voltages ranging from 4.5 V to 16.0 V , and may be specified as buffered or inverted with 10 kW Pull-up or Open Collector output. Devices are also TTI/LSTTL compatible and can drive up to 10 TTL loads.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing

Part Number Guide — OPB460, OPB470, OPB480, OPB490 Series

RoHS

CONTAINS POLYSULFONE

To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking. Vibra-Tite evaporates fast without causing structural failure in OPTEK's molded plastics.
Applies to: OPB460, OPB470, OPB480, OPB490.

Color-Pin	Description
Red-1	Anode
Black-2	Cathode
White-3	Vcc
Blue-4	Output
Green-5	Ground

Electrical Specifications
Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Soldering Temperature $\left[1 / 16\right.$ inch (1.6mm) from the case for 5 sec. with soldering iron ${ }^{(1)}$	$260^{\circ} \mathrm{C}$
Input Infrared LED	
Supply Voltage, V_{CC} (not to exceed 3 seconds)	18 V
Diode Forward DC Current	40 mA
Diode Reverse DC Voltage	2 V
Input Diode Power Dissipation ${ }^{(2)}$	75 mW
Output Photologic ${ }^{\circledR}$	25 V
Voltage at Output Lead (Open Collector Output)	200 mW
Output Photologic ${ }^{\circledR}$ Power Dissipation ${ }^{(3)}$	
Total Device Power Dissipation ${ }^{(4)}$	275 mW

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB460, OPB470) or derate linearly $1.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB480, OPB490).
(3) Derate linearly $1.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB460, OPB470) or derate linearly $1.64 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}($ OPB480, OPB490).
(4) Derate linearly $3.17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB460, OPB470) or derate linearly $3.45 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ (OPB480, OPB490).
(5) The OPB460/OPB470 series are terminated with $0.020^{\prime \prime}$ square leads designed for printed circuit board mounting.
(6) The OPB480/OPB490 series of switches are terminated with $24^{\prime \prime}(609.600 \mathrm{~mm})$ of 7 -strand 26 AWG, UL rated insulated wire on each terminal. Insulation colors and functions are: red (anode), black (cathode), white (V_{cc}), blue (output) and green (ground). Other wire lengths and/or colors in addition to customer selected connectors are available. Contact your local representative or call the factory.

OPB460/470/480/490 Buffered 10K Pull-Up

OPB462/472/482/492 Inverted 10K Pull-Up

OPB461/471/481/491 Buffered Open-Collector

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Output Photologic ${ }^{\text {® }}$ Sensor						
V_{cc}	Operating DC Supply Voltage	4.5	-	16	V	
$\mathrm{I}_{\text {ccL }}$	Low Level Supply Current: Buffered with 10 k pull-up ${ }^{(1)}$ Buffered Open-Collector Output	-	-	7.5	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted with 10k pull-up: Inverted Open-Collector Output	-	-	7.5	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
$\mathrm{I}_{\text {CHH }}$	High Level Supply Current: Buffered with 10k pull-up Buffered Open-Collector Output	-	-	7.5	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
	Inverted with 10k pull-up: Inverted Open-Collector Output	-	-	7.5	mA	$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
VoL	Low Level Output Voltage: Buffered with 10k pull-up Buffered Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{oL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
	Inverted with 10k pull-up: Inverted Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}^{(1)}$
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage: Buffered with 10k pull-up	$\begin{gathered} V_{c c} \\ -1.5 \end{gathered}$	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 16 V , No Load, $\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
	Inverted with 10k pull-up: Inverted Open-Collector Output ${ }^{(1)}$	$\begin{gathered} V_{c c} \\ -1.5 \end{gathered}$	-	-	V	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ to 16 V , No Load, $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$
$\mathrm{I}_{\text {OH }}$	High Level Output Voltage: Buffered Open-Collector Output	-	-	14	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=25 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
	Inverted with 10k pull-up: Inverted Open-Collector Output ${ }^{(1)}$	-	-	14	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=25 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{IF}_{\mathrm{F}(+)}$	LED Positive-Going Threshold Current	-	-	10	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{IF}_{\mathrm{F}(+) / \mathrm{l}(\mathrm{l})}$	Hysteresis	-	1.4	-	-	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	-	50	-	ns	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0$ or 12 mA
$\mathrm{t}_{\text {PLLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay	-	3	-	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=300 \Omega$ to $5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Notes:

(1) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$.
(2) All parameters tested using pulse technique.

