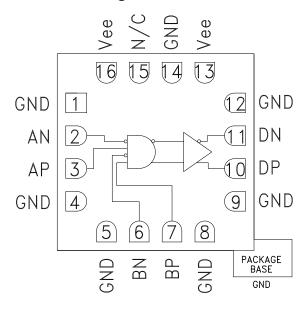


14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Typical Applications

The HMC726LC3C is ideal for:

- 16 G Fiber Channel
- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 14 Gbps
- Digital Logic Systems up to 14 GHz
- NRZ-to-RZ Conversion


Features

Supports High Data Rates: up to 14 Gbps Differential or Single-Ended Operation Fast Rise and Fall Times: 19 / 18 ps Low Power Consumption: 230 mW typ.

Propagation Delay: 95 ps Single Supply: -3.3 V

16 Lead Ceramic 3x3 mm SMT Package: 9mm²

Functional Diagram

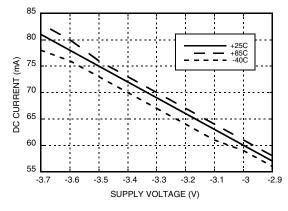
General Description

The HMC726LC3C is an AND/NAND/OR/NOR function designed to support data transmission rates of up to 14 Gbps, and clock frequencies as high as 14 GHz. The HMC726LC3C may be easily configured to provide any of the following logic functions: AND, NAND, OR and NOR.

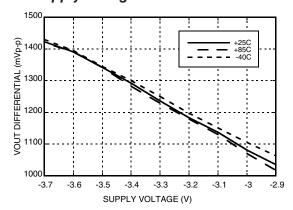
All differential inputs to the HMC726LC3C are CML and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. The differential CMI outputs are source terminated to to 50 Ohms and may also be AC or DC coupled. Outputs can be connected directly to a 50 Ohm ground-terminated system or drive devices with CML logic input. The HMC726LC3C operates from a single -3.3 V supply and is available in ROHS-compliant 3x3 mm SMT package.

Electrical Specifications, $T_A = +25^{\circ}\text{C}$, Vee = -3.3 V

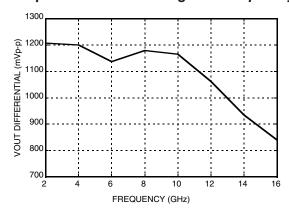
Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	V
Power Supply Current			70		mA
Maximum Data Rate			14		Gbps
Maximum Clock Rate			14		GHz
Input Voltage Range		-1.5		0.5	V
Input Differential Range		0.1		2.0	Vp-p
Input Return Loss	Frequency <14 GHz		10		dB
Output Amplitude	Single-Ended, peak-to-peak		550		mVp-p
Output Amplitude	Differential, peak-to-peak		1100		mVp-p
Output High Voltage			-10		mV
Output Low Voltage			-560		mV
Output Rise / Fall Time	Differential, 20% - 80%		19 / 18		ps

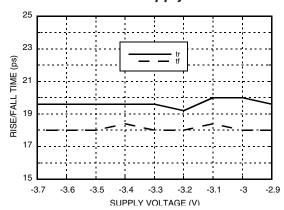

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Electrical Specifications (continued)


Parameter	Conditions	Min.	Тур.	Max	Units
Output Return Loss	Frequency <14 GHz		10		dB
Small Signal Gain			27		dB
Random Jitter Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input ^[1]		2		ps, p-p
Propagation Delay, td			95		ps

^[1] Deterministic jitter calculated by simultaneously measuring the jitter of a 300 mV, 13 GHz, 215-1 PRBS input, and a single-ended output


DC Current vs. Supply Voltage [1]

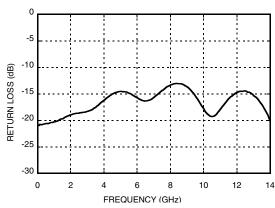

Output Differential Voltage vs. Supply Voltage [2]

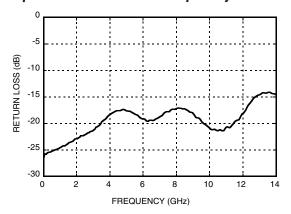
Output Differential Voltage vs. Frequency [3]

Rise / Fall Time vs. Supply [1]

[1] Data rate = 13 Gbps

[2] Frequency = 10 GHz

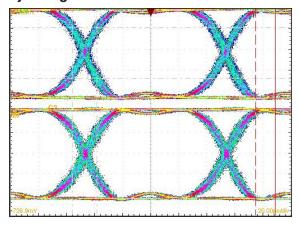

[3] Vee = -3.3 V



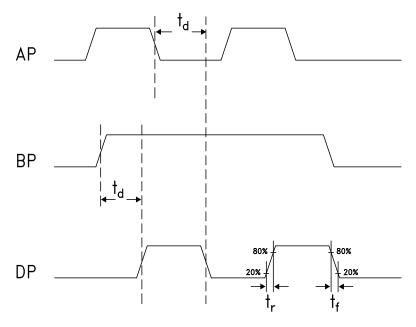
14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Output Return Loss vs. Frequency

Input Return Loss vs. Frequency



14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE


Eye Diagram

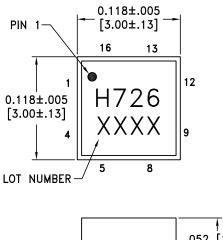
[1] Test Conditions:

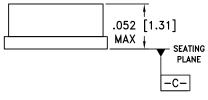
Pattern generated with an Agilent N4903A Serial BERT. Eye Diagram presented on a Tektronix CSA 8000. Device input = 10 Gbps PN code, Vin = 300 mVp-p differential.

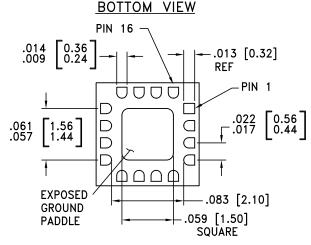
Timing Diagram

Truth Table

Input		Outputs
A	В	D
L	L	L
L	Н	L
Н	L	L
Н	Н	Н
Notes: A = AP - AN B = BP - BN D = DP - DN	H - Positive voltage level L - Negative voltage level	


14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE


Absolute Maximum Ratings


Power Supply Voltage (Vee)	-3.75 V to +0.5 V	
Input Signals	-2 V to +0.5 V	
Output Signals	-1.5 V to +1 V	
Continuous Pdiss (T = 85 °C) (derate 17 mW/°C above 85 °C)	0.68 W	
Thermal Resistance (R _{th j-p}) Worst case junction to package paddle	59 °C/W	
Maximum Junction Temperature	125 °C	
Storage Temperature	-65 °C to +150 °C	
Operating Temperature	-40 °C to +85 °C	
ESD Sensitivity (HBM)	Class 1C	

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-
- ${\bf 6.}$ ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO GND.

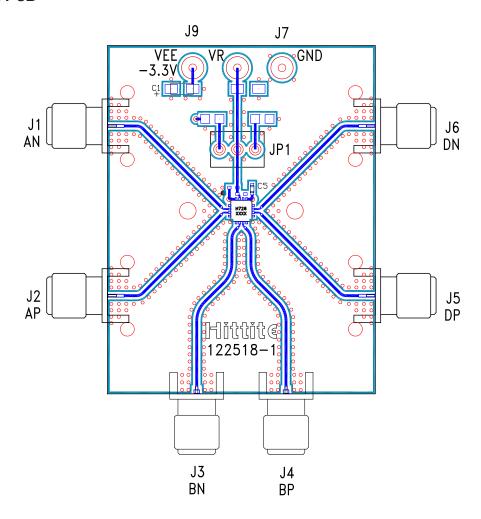
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC726LC3C	Alumina, White	Gold over Nickel	MSL3 ^[1]	H726 XXXX

- [1] Max peak reflow temperature of 260 °C
- [2] 4-Digit lot number XXXX

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	⊖ GND =
2, 3 6, 7	AN, AP BN, BP	Differential Data Inputs, Current Mode Logic (CML) referenced to positive supply.	GND GND SNN
10, 11	DP, DN	Differential Data Outputs, Current Mode Logic (CML) referenced to positive supply.	GND O GND DP O DN
13, 16	Vee	Negative Supply	
14, Package Base	GND	Supply Ground	GND =
15	N/C	No Connection required. This pin may be connected to RF/DC ground without affecting performance.	

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

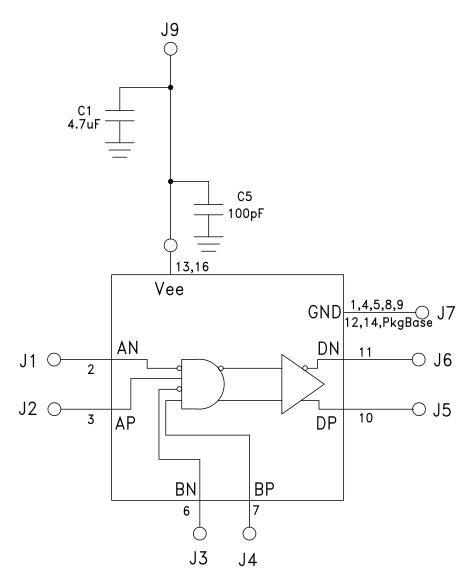
Evaluation PCB

List of Materials for Evaluation PCB 122520 [1]

Item	Description	
J1 - J6	PCB Mount SMA RF Connectors	
J7, J9	DC Pin	
C1	4.7 μF Capacitor, Tantalum	
C5	100 pF Capacitor, 0402 Pkg.	
U1	HMC726LC3C High Speed Logic, AND / NAND / OR / NOR	
PCB [2]	122518 Evaluation Board	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed package base should be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.


^[2] Circuit Board Material: Arlon 25FR or Rogers 4350

14 Gbps, FAST RISE TIME AND / NAND / OR / NOR GATE

Application Circuit

