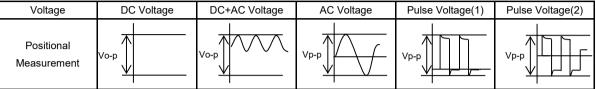


Reference Specification

Leaded MLCC for General Purpose RDE Series

Product specifications in this catalog are as of Mar. 2022, and are subject to change or obsolescence without notice.


Please consult the approval sheet before ordering.Please read rating and Cautions first.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <u>the condition of</u> <u>atmosphere temperature 25 °C</u>. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 3. Undersea equipment
- 2. Aerospace equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity : Output of 20 watts per liter or less. Rinsing time : 5 min maximum. Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This product specification is applied to Leaded MLCC RDE series used for General Electronic equipment. Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

2. Rating

Part Number Configuration

ex.)	RDE	R7	2E	102	K	1	K1	H03	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

<u>Temperature Characteristics</u>

Code	Temp. Char.	Temp. Range	Cap. Change	Standard Temp.	Operating Temp. Range
R7	X7R (EIA code)	-55~125°C	+/-15%	25°C	-55~125°C

Rated Voltage

Code	Rated voltage
2E	DC250V
2H	DC500V
2J	DC630V
3A	DC1000V

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 102

 $10 \times 10^2 = 1000 \text{pF}$

Capacitance Tolerance

Code	Capacitance Tolerance
K	+/-10%
М	+/-20%

• Dimension (LxW)

Please refer to [Part number list].

Lead Style

*Lead wire is "solder coated CP wire".

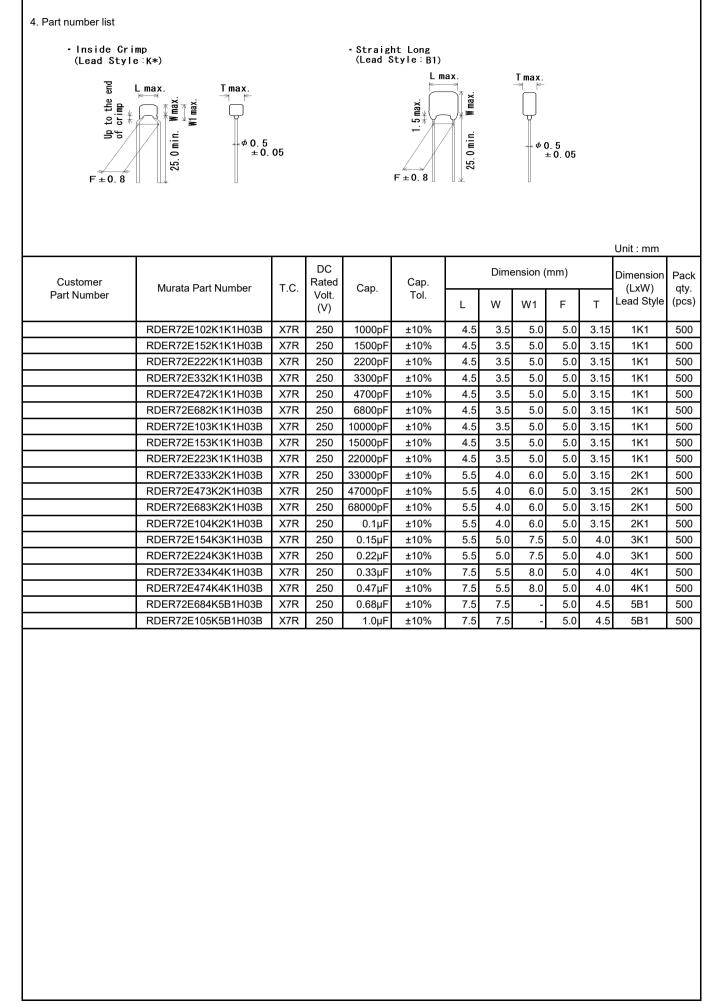
Cada	Lood Style	Lood anaging (mm)
Code	Lead Style	Lead spacing (mm)
B1	Straight type	5.0+/-0.8
E1	Straight taping type	5.0+0.6/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

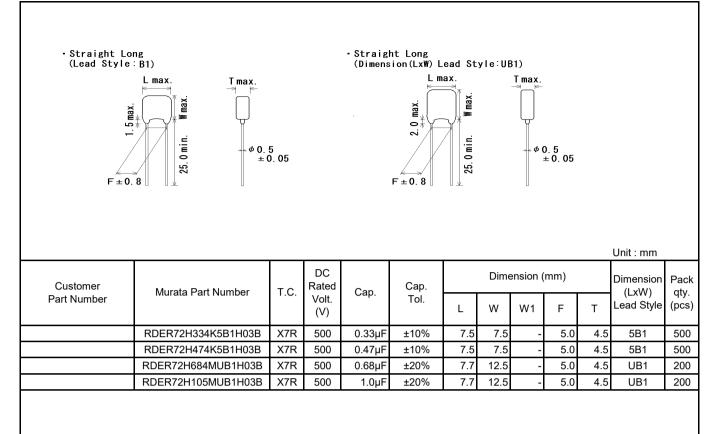
Individual Specification

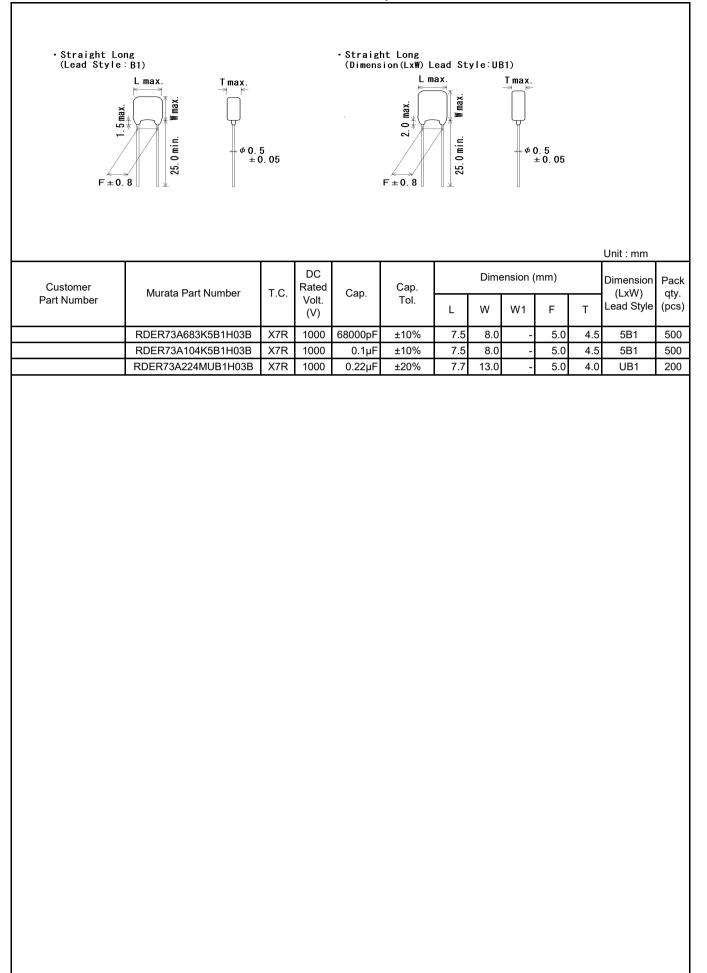
Murata's control code.

Please refer to [Part number list].

Package


Code	Package
A	Taping type of Ammo
В	Bulk type


3. Marking


Temp. char. Capacitance Capacitance tolerance	:	Letter code : C (X7R Char. Except dimension code : 1) 3 digit numbers Code
Rated voltage	:	Letter code : 4 (DC250V. Except dimension code : 1)
		Letter code : 9 (DC500V. Except dimension code : 1)
		Letter code : 7 (DC630V)
		Letter code : A (DC1000V)
Company name code	:	Abbreviation : 🖸 (Except dimension code : 1)

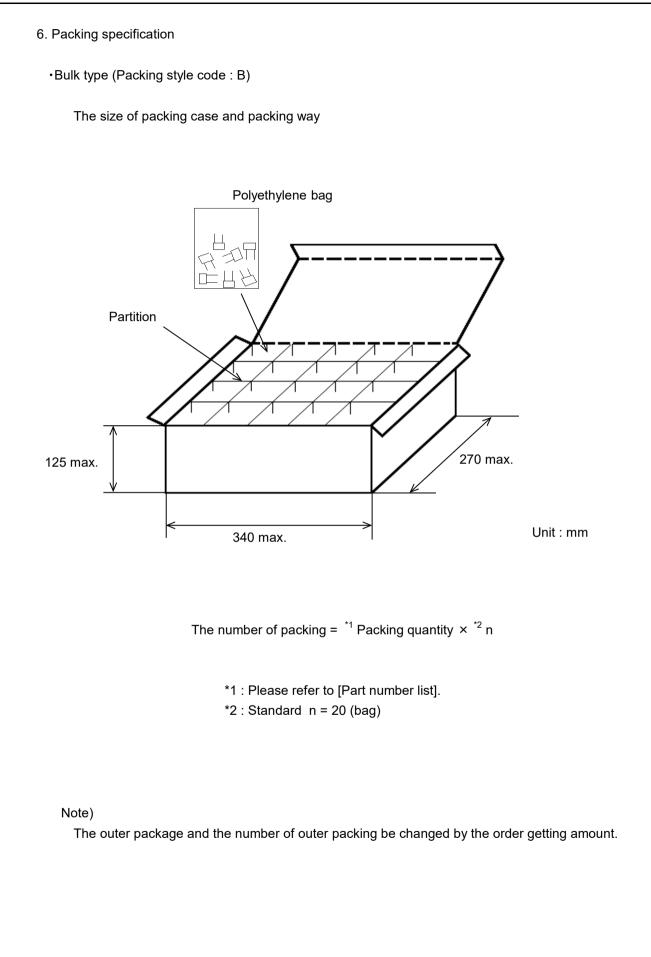
(Ex.)

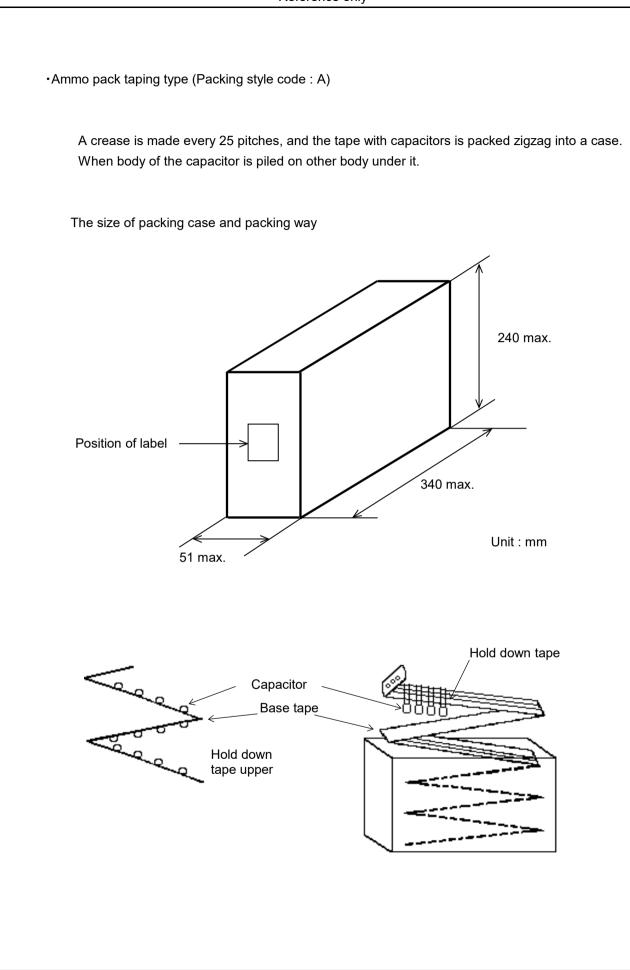
Rated voltage Dimension code	DC250V	DC500V	DC630V	DC1000V
1	103K	103K	_	_
2	(Fr 473 K4C	(¹⁵³ K9C	Gr 153 K7C	(F ¹⁵² KAC
3,4	(Cm 154 K4C	(Cm 104 K9C	(m 104 K7C	(m 473) KAC
5,U	684 K4C	474 K9C	4 74 M7C	CM 224 MAC

Customer Part Number	F ± 0.0 ± 0.0	5					F ±0.2	• • • •	0.5 ±0.05				
										IJ			
												Unit : mm	
			DC				D	mensio	n (mn	1)			
	Murata Part Number	T.C.	Rated Volt. (V)	Cap.	Cap. Tol.	L	w	W1	F	T	H/H0	Dimension (LxW) Lead Style	Pac qty (pcs
	RDER72E102K1M1H03A	X7R	250	1000pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	200
	RDER72E152K1M1H03A	X7R	250	1500pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	200
	RDER72E222K1M1H03A	X7R	250	2200pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	200
	RDER72E332K1M1H03A	X7R	250	3300pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDER72E472K1M1H03A	X7R	250	4700pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDER72E682K1M1H03A	X7R	250	6800pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0		200
	RDER72E103K1M1H03A RDER72E153K1M1H03A	X7R X7R	250 250	10000pF	±10% ±10%	4.5 4.5	3.5 3.5	5.0 5.0	5.0 5.0	3.15 3.15	16.0 16.0		200 200
	RDER72E153K1M1H03A	X7R	250	15000pF 22000pF	±10%	4.5 4.5	3.5 3.5	5.0 5.0	5.0 5.0	3.15	16.0		200
	RDER72E333K2M1H03A	X7R	250	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0		200
	RDER72E473K2M1H03A	X7R	250	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0		200
	RDER72E683K2M1H03A	X7R	250	68000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0		200
	RDER72E104K2M1H03A	X7R	250	0.1µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	200
	RDER72E154K3M1H03A	X7R	250	0.15µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	200
	RDER72E224K3M1H03A	X7R	250	0.22µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	200
	RDER72E334K4M1H03A	X7R	250	0.33µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0		150
	RDER72E474K4M1H03A	X7R	250	0.47µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0		150
	RDER72E684K5E1H03A	X7R	250	0.68µF	±10%	7.5	7.5	-	5.0	4.5	17.5		150
	RDER72E105K5E1H03A RDER72E225MUE1H03A	X7R X7R	250 250	1.0μF 2.2μF	±10% ±20%	7.5 7.7	7.5 12.5	-	5.0 5.0	4.5 4.5			150 150

_xW)	Pao
ension ∦ ₋xW)	Pac
_xW)	Pac
,	
u Style (qty (pc:
1M1 2	200
1M1 2	200
	200
	200
	200
	200
	200
	200
	200
	200
	200
	200
	150
	150
	150
	150
UE1	150
	150
	M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M

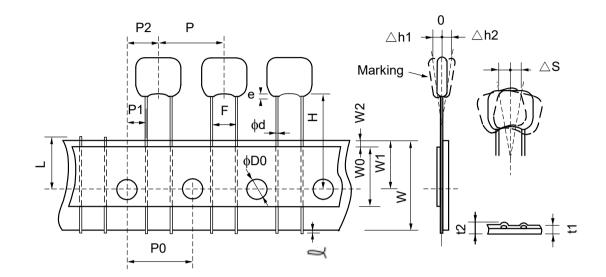
	ECIFICATIONS	AND TEST M	ETHODS					
No.	lt	em	Specification	Test Method				
1	Appearance		No defects or abnormalities.	Visual inspection.				
2	Dimension and	d Marking	Within the specified dimensions and Marking.	Visual inspection, Using Caliper.				
3	Dielectric	Between	No defects or abnormalities.	The capacitor should not be damaged when voltage				
	Strength	Terminals		in Table is applied between the terminations for 1 to 5 seconds.				
				(Charge/Discharge current \leq 50mA.)				
				Rated voltage Test voltage				
				DC250V 200% of the rated voltage				
				DC500V, DC630V 150% of the rated voltage				
				DC1kV 120% of the rated voltage				
		Pody						
		Body Insulation	No defects or abnormalities.	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately				
				2mm from the balls as shown in the figure, for 1 to 5 seconds between				
				capacitor terminals and metal balls.				
				(Charge/Discharge current \leq 50mA.)				
				Rated voltage Test voltage				
				DC250V, DC500V 200% of the rated voltage				
				DC630V, DC1kV DC1300V				
4	Insulation	Between	10 000MΩ or 100MΩ•μF min.	The insulation resistance should be measured with				
	Resistance	Terminals	(Whichever is smaller)	DC500V (DC250V in case of rated voltage : DC250V)				
	(I.R.)			at normal temperature and humidity and				
				within 2 minutes of charging. (Charge/Discharge current \leq 50mA.)				
5	Capacitance		Within the specified tolerance.	The capacitance, D.F. should be measured at 25°C				
6	Dissipation Fa	ctor	0.025 max.	at the frequency and voltage shown in the table.				
0		CIOI	0.025 max.	Nominal Cap. Frequency Voltage				
	(D.F.)			C≦1000pF 1±0.1MHz AC0.5~5V (r.m.s.)				
				C>1000pF 1±0.1kHz AC1±0.2V (r.m.s.)				
7	Capacitance		within ±15%	The capacitance change should be measured at each specified				
	Temperature			temperature stage.				
	Characteristics			Step Temperature(°C)				
				1 25±2				
				2 -55±3				
				3 25±2				
				4 125±3 5 25±2				
				Pretreatment Perform a heat treatment at 150+0/-10°C for one				
				hour and then set at *room condition temperature for 24±2 hours.				
8	Terminal Tensile			nour and then set at noom condition temperature for 2412 hours.				
5			Termination not to be broken or loosened	As in the figure, fix the capacitor body				
	Strenath		Termination not to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually to each lead				
	Strength	Strength	Termination not to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor				
	Strength		Termination not to be broken or loosened.	apply the force gradually to each lead				
	Strength		Termination not to be broken or loosened.	apply the force gradually to each lead in the radial direction of the capacitor F				
	Strength		Termination not to be broken or loosened.	apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep				
	Strength	Strength		apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds.				
	Strength	Strength Bending		apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of				
	Strength	Strength Bending		apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite				
		Strength Bending Strength	Termination not to be broken or loosened.	apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.				
9	Vibration	Strength Bending Strength Appearance	Termination not to be broken or loosened.	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having 				
9		Strength Bending Strength Appearance Capacitance	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance.	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly 				
9	Vibration	Strength Bending Strength Appearance	Termination not to be broken or loosened.	apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10 ± 1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range,				
9	Vibration	Strength Bending Strength Appearance Capacitance	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance.	apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10 ± 1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in				
9	Vibration	Strength Bending Strength Appearance Capacitance	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance.	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 				
-	Vibration Resistance	Strength Bending Strength Appearance Capacitance D.F.	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance. 0.025max.	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). 				
9	Vibration	Strength Bending Strength Appearance Capacitance D.F.	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance. 0.025max. Solder is deposited on unintermittently	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) 				
-	Vibration Resistance	Strength Bending Strength Appearance Capacitance D.F.	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance. 0.025max. Solder is deposited on unintermittently immersed portion in axial direction	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in 				
-	Vibration Resistance	Strength Bending Strength Appearance Capacitance D.F.	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance. 0.025max. Solder is deposited on unintermittently	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in solder solution for 2±0.5 seconds. In both cases the depth of dipping 				
-	Vibration Resistance	Strength Bending Strength Appearance Capacitance D.F.	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance. 0.025max. Solder is deposited on unintermittently immersed portion in axial direction covering 3/4 or more in circumferential	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in solder solution for 2±0.5 seconds. In both cases the depth of dipping is up to about 1.5 to 2mm from the terminal body. 				
-	Vibration Resistance	Strength Bending Strength Appearance Capacitance D.F.	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance. 0.025max. Solder is deposited on unintermittently immersed portion in axial direction covering 3/4 or more in circumferential	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in solder solution for 2±0.5 seconds. In both cases the depth of dipping 				
-	Vibration Resistance	Strength Bending Strength Appearance Capacitance D.F.	Termination not to be broken or loosened. No defects or abnormalities. Within the specified tolerance. 0.025max. Solder is deposited on unintermittently immersed portion in axial direction covering 3/4 or more in circumferential	 apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in solder solution for 2±0.5 seconds. In both cases the depth of dipping is up to about 1.5 to 2mm from the terminal body. Temp. of solder : 				


ESRDE113B

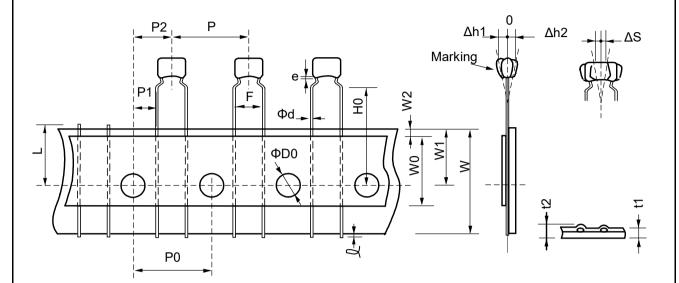

Reference only

No.	. Item		Specification	Test Method						
11-1	Resistance	Appearance	No defects or abnormalities.	The le	ad wires s	should be imme	ersed in the m	elted solder 1.	5 to 2.0mm	
	to Soldering	Capacitance	Within ±7.5%	from the root of terminal at 260±5°C for 10±1 seconds.						
	Heat	Change								
	(Non-	Dielectric	No defects.	• Pre-	treatment					
	Preheat)	Strength		Capacitor should be stored at 150+0/-10°C for one hour, then place				nen place		
	,	(Between						ial measureme		
		terminals)			-treatment					
		torriniaio)					24+2 hours :	at *room condit	ion	
11-2	Resistance	Appearance	No defects or abnormalities.	Capacitor should be stored for 24±2 hours at *room condition. First the capacitor should be stored at 120+0/-5°C for 60+0/-5 seconds.						
	to Soldering	Capacitance	Within ±7.5%	Then, the lead wires should be stored at 12010/50 C for 0010/0020 second 1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-1 second • Pre-treatment						
	Heat	Change								
	(On-	Dielectric	No defects.					0/-1 Seconds.		
	·		no delects.							
	Preheat)	Strength				dha atarad at	150.0/ 1000	far and have t	than place	
		(Between		Capacitor should be stored at 150+0/-10°C for one hour, t at *room condition for 24±2 hours before initial measureme		-				
		terminals)					urs beiore mit	iai measureme	int.	
					-treatment		04-01			
44.0	D					d be stored for	24±2 hours a	at *room condit	ion.	
11-3	Resistance	Appearance	No defects or abnormalities.		condition		1000			
	to Soldering	Capacitance	Within ±7.5%	Temperature of iron-tip : 350±10°C						
	Heat	Change		Soldering time : 3.5±0.5 seconds						
	(soldering	Dielectric	No defects.		ring positio					
	iron method)	Strength			-	1.5 to 2.0mm				
		(Between		Crim	p Lead : 1	.5 to 2.0mm fro	om the end of	lead bend.		
		terminals)								
				• Pre-	treatment					
				Capa	citor should	d be stored at	150+0/-10°C	for one hour, th	nen place	
				at *ro	om conditio	on for 24±2 ho	urs before init	ial measureme	ent.	
				Post-treatment						
				Capa	citor should	d be stored for	24±2 hours a	at *room condit	ion.	
12	Temperature	Appearance	No defects or abnormalities.	Repe	at 5 cycles	according to t	he 4 heat trea	tments		
	Cycle	Capacitance	Within ±12.5%	listed in the following table. Set at *room condition for 24±2 hours, then measure.						
		Change								
		D.F.	0.05 max.		Step	1	2	3	4	
					Otep		2			
		I.R.	1,000MΩ or 50MΩ • μF min.		Temp.	Min. Operating	Room	Max. Operating	Room	
			(Whichever is smaller)		(°C)	Temp. ±3	Temp.	Temp. ±3	Temp.	
		Dielectric	No defects or abnormalities.		Time					
		Strength			(min.)	30±3	3 max.	30±3	3 max.	
		(Between			()					
		Terminals)		 Pret 	reatment					
				Perfo	m a heat t	reatment at 15	0+0/-10°C for	rone		
				hour a	and then se	et at *room cor	ndition for 24±	2 hours.		
13	Humidity	Appearance	No defects or abnormalities.	Set the capacitor at 40±2°C and relative						
	(Steady	Capacitance	Within ±12.5%	humic	lity 90 to 9	5% for 500+24	/-0 hours.			
	State)	Change		Remove and set at *room condition for 24±2 hours, then measure.					easure.	
		D.F.	0.05 max.							
		I.R.	1,000MΩ or 50MΩ • μF min.	• Pret	reatment					
			(Whichever is smaller)	Perfo	m a heat t	reatment at 15	0+0/-10°C for	rone		
		Marking	Legible.	hour and then set at *room condition for 24 ± 2 hours.						
14	Humidity	Appearance	No defects or abnormalities.	Apply	the rated v	voltage at 40±2	2°C and relativ	ve		
	Load	Capacitance	Within ±12.5%			-				
		Change		humidity of 90 to 95% for 500+24/-0 hours. Remove and set at *room condition for 24±2 hours, then measure.					easure.	
		D.F.	0.05 max.	-		rge current ≦ :				
		I.R.	500MΩ or 25MΩ· μ F min.	1		J	,			
			(Whichever is smaller)	• Pret	reatment					
						reatment at 15	0+0/-10°C fo	one		
* "roo	n condition" T	emperatura · 15	to 35°C, Relative humidity : 45 to 75%, Atmos	hour and then set at *room condition for 24±2 hours.						
100				Þ						
1										

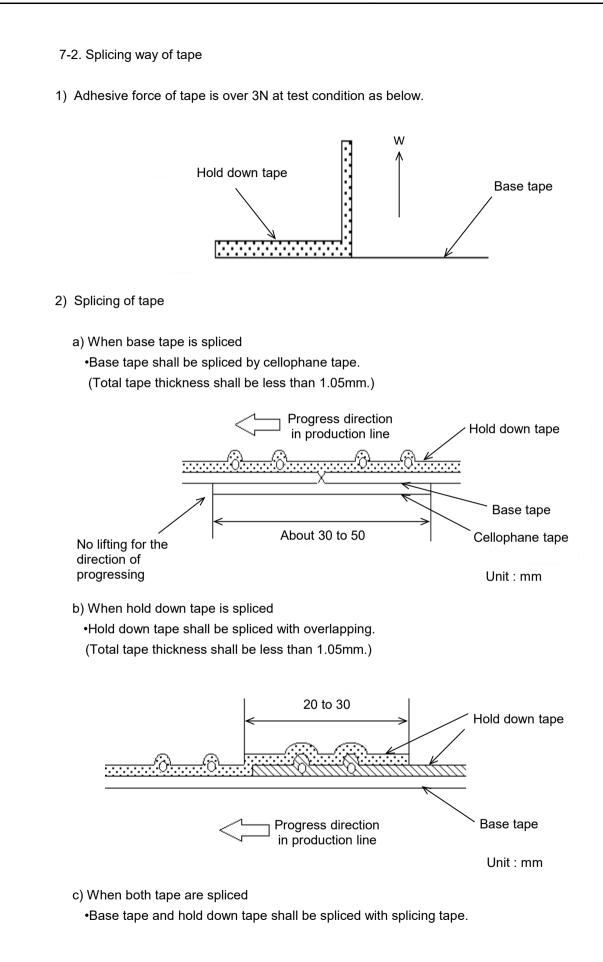
Reference only


			Reference	ce only				
No.	lt	em	Specification			Test Method		
15	High	Appearance	No defects or abnormalities.	Apply voltad	ge in Table for 1000+4			
-	Temperature	Capacitance	Within ±12.5%		operating temperature			
		-						
	Load	Change		Remove and set at *room condition for 24 \pm 2 hours, then measure. (Charge/Discharge current \leq 50mA.)				
		D.F.	0.04 max.					
		I.R.	1,000MΩ or 50MΩ • μF min.	г	Rated voltage	Test voltage		
			(Whichever is smaller)	1 F				
				1 -	DC250V	150% of the rated voltage		
					DC500V, DC630V	120% of the rated voltage		
				1 [DC1kV	110% of the rated voltage		
				-				
				 Pretreatment 	ent			
				Apply test v	oltage for one hour at	test temperature.		
				Remove an	d set at *room condition	on for 24±2 hours.		
6	Solvent	Appearance	No defects or abnormalities.	1	tor should be fully imm			
	Resistance	Marking	Legible.		at 20 to 25°C for 30±5			
				remove ger	ntly. Marking on the su	rface of the		
				capacitor sh	hall immediately be vis	sually examined.		
				Pogont : lor	opropyl alcohol			
		L						
JOL	n condition	emperature : 15	to 35°C, Relative humidity : 45 to 75%, Atmos	spnere press	ure : 86 to 106kPa			

7. Taping specification


7-1. Dimension of capacitors on tapeStraight taping type < Lead Style : E1 >Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mm


Item	Code	Dimensions	Remarks	
Pitch of component	component P 12.7+/-1.0			
Pitch of sprocket hole		12.7+/-0.2		
Lead spacing		5.0+0.6/-0.2		
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	r to lead P1 3.85+/-0.7			
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
For straight lead type	Н	17.5+/-0.5		
Protrusion length	ل 0.5 max.			
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	diameter Φd 0.5+/-0.05			
Total tape thickness	t1	0.6+/-0.3	They include hold down tape	
Total thickness of tape and lead wire	t2	1.5 max.	thickness.	
Deviation corose tone	∆h1	2.0 max. (Dime	ension code : U)	
Deviation across tape	∆h2	1.0 max. (exce	pt as above)	
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	2.0 max. (Dime 1.5 max. (exce	ension code:U) pt as above)	

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mm

Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	3.85+/-0.7		
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	H0	16.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	Φd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape thickness	
Total thickness of tape and lead wire	t2	1.5 max.		
Deviation across tans	∆h1	2.0 max. (D	(Dimension code : W)	
Deviation across tape	∆h2	1.0 max. (e:	xcept as above)	
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	Up to the end of	crimp	

