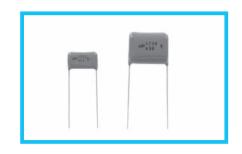


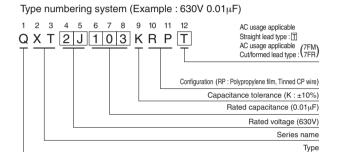
Metallized Polypropylene Film Capacitor

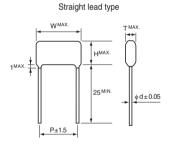


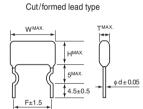
(For High Frequency and Large Current Applications) For High Frequency

- Ideal for high frequency applications due to a metallized polypropylene film dielectric which exhibits superior operative characteristics with minimal loss at high frequency.
- Electrode has minimal inductance because of non-inductive construction.
- Finished by inner dipping with liquid epoxy resin and outer coating with flame-retardant epoxy resin, those
 double coating gives superior characteristics against moisture.
- Compliant to the RoHS directive (2011/65/EU,(EU)2015/863).

Applications


 High frequency & large current circuit applications (resonant circuit, change & discharge circuit & etc.)


Specifications


Item	Performance Characteristics								
Category Temperature Range	-40 to +105°C (Rated temperature : 85°C)								
Rated Voltage (U _R)	400, 630VDC								
Rated Capacitance Range	0.0068 to 0.1µF								
Capacitance Tolerance	±10% (K)								
Directric Loss Tangent	0.1% or less (at 1kHz)								
Insulation Resistance	$C \leqq 0.33 \mu F~30000~M\Omega$ or more $C > 0.33 \mu F~10000~\Omega F$ or more								
Withstand Voltage	Between Terminals : Rated Voltage × 175%, 1 to 5 secs. Between Terminals : Rated Voltage × 200%, 1 to 5 secs.								
Encapsulation	Flame retardant epoxy resin								

Category voltage = U_R × 0.7

Drawing

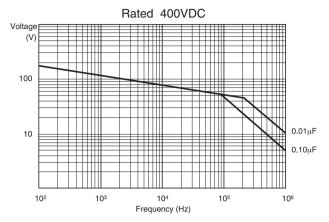
F Size	Code
15.0	7FM
20.0	7FR

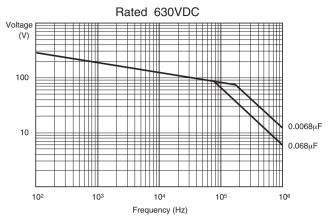
Maximum allowable voltage to high frequency range

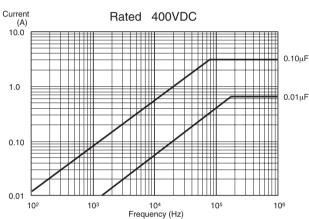
Maximum allowable voltage differs by frequency and it is reguested to refer the graphs shown in next page. Effective values for 200 kHz sine wave is indicated in the list below.

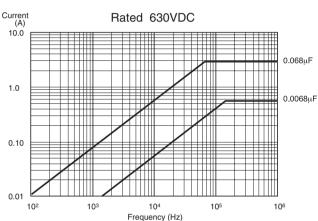
Dimensions

Unit	:	mm

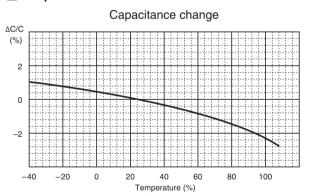

(µF)	V(Code)	400VDC						Permissible Effective Value (200kHz)				Permissible Effective Value (200kHz)					
Cap.	ode Size	Т	W	Н	d	Р	F	Ve(V)	le(A)	Т	W	Н	d	Р	F	Ve(V)	le(A)
0.0068	682									6.0	19	13.5	0.8	15	15	66	0.57
0.01	103	5.4	19	12.9	0.8	15	15	52	0.66	6.8	19	14.3	0.8	15	15	58	0.74
0.015	153	6.1	19	13.6	0.8	15	15	45	0.85	7.9	19	15.4	0.8	15	15	51	0.87
0.022	223	7.0	19	14.5	0.8	15	15	39	1.10	9.3	19	16.8	0.8	15	15	45	1.26
0.033	333	8.2	19	15.7	0.8	15	15	35	1.46	9.0	24	18.8	0.8	20	20	41	1.71
0.047	473	9.6	19	17.1	0.8	15	15	31	1.86	10.5	24	20.3	0.8	20	20	38	2.29
0.068	683	7.8	24	17.7	0.8	20	20	27	2.38	12.5	24	22.3	0.8	20	20	34	2.94
0.1	104	9.3	24	19.1	0.8	20	20	24	3.10								

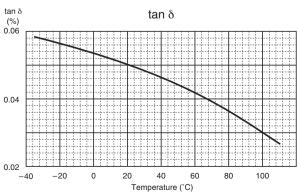

F: lead pitch for cut / formed lead wires.

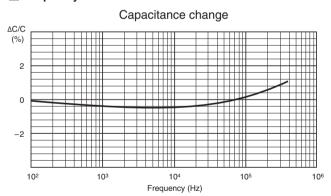

Since rating other than the above can be manufactured, please ask for detail.

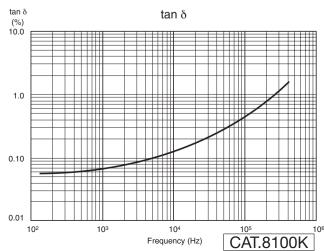

QXT

Maximum permissible voltage used at higher frequency range (Sine Wave)






Typical Characteristic Curves Remarks: Typical curves are as shown below. (Slightly different depending on individual rating.)


■ Temperature Characteristics

■ Frequency Characteristics

