

SN74LVC2G07

SCES308L-AUGUST 2001-REVISED MAY 2015

SN74LVC2G07 Dual Buffer and Driver With Open-Drain Outputs

1 Features

- Dual Open-Drain Buffer Configuration
- -24-mA Output Drive at 3.3 V
- Support Translation-Up and Down
- Available in the Texas Instruments NanoFree[™] Package
- Supports 5-V V_{CC} Operation
- Inputs and Open-Drain Outputs Accept Voltages Up to 5.5 V
- Max t_{pd} of 3.7 ns at 3.3 V
- Low Power Consumption, 10- μ A Max I_{CC}
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

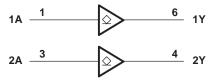
2 Applications

- Blu-ray Players and Home Theaters
- DVD Recorders and Players
- Desktops or Notebook PCs
- Digital Video Cameras (DVC)
- Embedded PCs
- GPS: Personal Navigation Devices
- Mobile Phones
- Network Projector Front Ends
- Portable Media Players
- Solid State Drive (SSD): Enterprise
- High-Definition (HDTV)
- Tablet: Enterprise
- Audio Dock: Portable
- DLP Front Projection System

3 Description

This dual buffer and driver is designed for 1.65-V to 5.5-V V_{CC} operation. The output of the SN74LVC2G07 device is open drain and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum sink current is 32 mA.

NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.


This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)				
	SOT-23 (6)	2.90 mm × 1.60 mm				
	SC70 (6)	2.00 mm × 1.25 mm				
SN74LVC2G07	DRY SON (6)	1.45 mm × 1.00 mm				
	DSF SON (6)	1.00 mm × 1.00 mm				
	DSBGA (6)	1.41 mm × 0.91 mm				

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Functional Block Diagram

TEXAS INSTRUMENTS

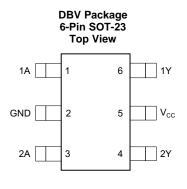
www.ti.com

Table of Contents

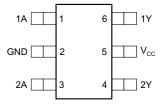
1	Feat	tures	. 1
2	Арр	lications	. 1
3	Des	cription	. 1
4	Rev	ision History	. 2
5	Pin	Configuration and Functions	. 3
6	Spe	cifications	. 4
	6.1	Absolute Maximum Ratings	. 4
	6.2	ESD Ratings	. 4
	6.3	Recommended Operating Conditions	. 4
	6.4	Thermal Information	
	6.5	Electrical Characteristics	. 5
	6.6	Switching Characteristics from -40°C to 85°C	. 5
	6.7	Switching Characteristics from -40°C to 125°C	. 5
	6.8	Operating Characteristics	
	6.9	Typical Characteristics	. 6
7	Para	ameter Measurement Information	. 7
	7.1	(Open-Drain)	. 7
8	Deta	ailed Description	. 8

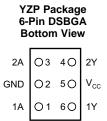
	8.1	Overview	8
	8.2	Functional Block Diagram	8
	8.3	Feature Description	<mark>8</mark>
	8.4	Device Functional Modes	<mark>8</mark>
9	Арр	lication and Implementation	9
	9.1	Application Information	9
	9.2	Typical Application	9
10	Pow	ver Supply Recommendations	10
11	Lay	out	10
	11.1	Layout Guidelines	10
	11.2	Layout Examples	10
12	Dev	ice and Documentation Support	
	12.1	Documentation Support	11
	12.2	Community Resources	11
	12.3	Trademarks	11
	12.4	Electrostatic Discharge Caution	11
	12.5	Glossary	11
13	Mec	hanical, Packaging, and Orderable	
		rmation	11

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision K (November 2013) to Revision L Page Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes Application and Implementation section, Power Supply Recommendations section, Layout section, Device				
•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section				
С	hanges from Revision J (August 2012) to Revision K	Page			


•	Updated document to new TI data sheet format	1
•	Updated operating temperature range.	4



5 Pin Configuration and Functions

DRY Package
6-Pin SON
Top View

1A	1	6	1Y
GND	2	5	V_{cc}
2A	3	4	2Y

D	SF Pa 6-Pin S Top V	SON	
1A	<u>1</u>	6	1Y
GND	2	5_	V_{cc}
2A	3	<u>4</u>	2Y

Pin Functions

PIN	1/0	DESCRIPTION		
NAME	NO	I/O	DESCRIPTION	
1A	1	I	Input 1	
GND	2	—	Ground	
2A	3	I	Input 2	
2Y	4	0	Open-drain output 2	
V _{CC}	5	—	Power pin	
1Y	6	0	Open-drain output 1	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

				MIN	MAX	UNIT
V_{CC}	Supply voltage			-0.5	6.5	V
VI	Input voltage ⁽²⁾			-0.5	6.5	V
Vo				-0.5	6.5	V
Vo	Voltage applied to any output in the high or low state ⁽²⁾⁽³⁾			-0.5	6.5	V
I _{IK}	Input clamp current	V _I < 0			-50	mA
I _{OK}	Output clamp current	V _O < 0			-50	mA
I _O	Continuous output current				±50	mA
	Continuous current through V _{CC} or GND				±100	mA
T _{stg}	Storage Temperature			-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	+2000	
V _{(ES}	D) Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	+1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V	Supply voltage	Operating	1.65	5.5	V
V _{CC}		Data retention only	1.5		v
		V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
V	High lovel input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V
V _{IH}	High-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	2		v
		V_{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$		
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	
V	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
V _{IL}		$V_{CC} = 3 V \text{ to } 3.6 V$		0.8	
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		$0.3 \times V_{CC}$	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	5.5	V
		V _{CC} = 1.65 V		4	
		$V_{CC} = 2.3 V$		8	
I _{OL}	Low-level output current			16	mA
		$V_{CC} = 3 V$		24	
		$V_{CC} = 4.5 V$		32	
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
$\Delta t / \Delta v$	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$		5	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Recommended Operating Conditions⁽¹⁾ (continued)

		MIN	MAX	UNIT
T _A	Operating free-air temperature	-40	125	°C

6.4 Thermal Information

		SN74LVC2G07							
	THERMAL METRIC ⁽¹⁾	SOT-23	SC70	DRY (SON)	DSBGA	DSF (SON)	UNIT		
		6 PINS	6 PINS	6 PINS	6 PINS	6 PINS			
R_{\thetaJA}	Junction-to-ambient thermal resistance	165	259	234	123	300	°C/W		

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V	–40°C to 85°C	–40°C to 125°C	UNIT
PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP ⁽¹⁾ MAX	MIN TYP ⁽¹⁾ MAX	UNIT
	I _{OL} = 100 μA	1.65 V to 5.5 V	0.1	0.1	
	I _{OL} = 4 mA	1.65 V	0.45	0.45	
V	I _{OL} = 8 mA	2.3 V	0.3	0.3	V
V _{OL}	I _{OL} = 16 mA	3 V	0.4	0.4	v
	I _{OL} = 24 mA	3 V	0.55	0.55	
	I _{OL} = 32 mA	4.5 V	0.55	0.55	
I _I A inputs	$V_1 = 5.5 \text{ V or GND}$	0 to 5.5 V	±5	±5	μA
I _{off}	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0	±10	±10	μA
I _{cc}	$V_1 = 5.5 \text{ V or GND}, \qquad I_0 = 0$	1.65 V to 5.5 V	10	10	μA
ΔI _{CC}	One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	3 V to 5.5 V	500	500	μΑ
CI	V _I = V _{CC} or GND	3.3 V	3.5	3.5	pF

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

6.6 Switching Characteristics from –40°C to 85°C

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

		TO (OUTPUT)	–40°C to 85°C								
PARAMETER	FROM (INPUT)		V _{CC} = 1 ± 0.1		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	1.5	8.6	1	4.4	1	3.7	1	2.9	ns

6.7 Switching Characteristics from -40°C to 125°C

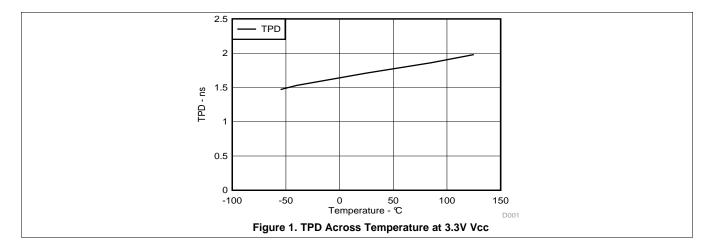
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

		TO (OUTPUT)	–40°C to 125°C								
PARAMETER	FROM (INPUT)		V _{CC} = 1 ± 0.1		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A	Y	1.5	8.6	1	4.9	1	4.2	1	3.4	ns

6.8 Operating Characteristics

 $T_A = 25^{\circ}C$

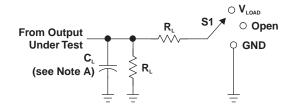
	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	$V_{CC} = 5 V$	UNIT
	FARAIVIETER	TEST CONDITIONS	TYP	ТҮР	TYP	TYP	UNIT
C_{pd}	Power dissipation capacitance	f = 10 MHz	3	3	4	4	pF


Copyright © 2001–2015, Texas Instruments Incorporated

SN74LVC2G07 SCES308L-AUGUST 2001-REVISED MAY 2015

www.ti.com

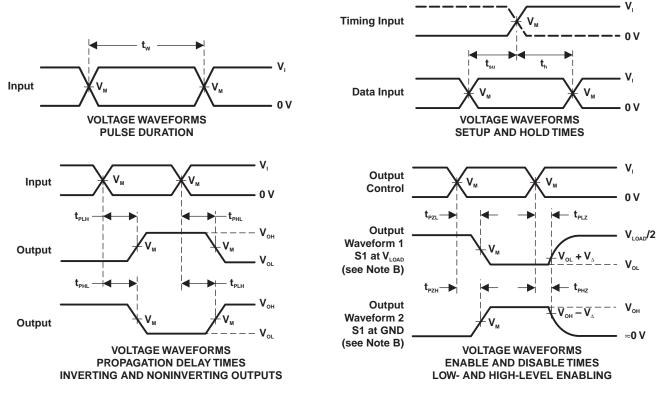
6.9 Typical Characteristics



SN74LVC2G07 SCES308L-AUGUST 2001-REVISED MAY 2015

www.ti.com

7 Parameter Measurement Information


7.1 (Open-Drain)

TEST	S1
t _{PZL} (see Notes E and F)	VLOAD
t _{PLZ} (see Notes E and G)	VLOAD
t _{PHZ} /t _{PZH}	V_{load}

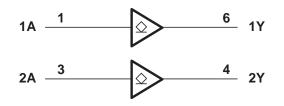
LOAD CIRCUIT

V _{cc}	INF	PUTS	N N	N		-	
	V	t,/t,	V _M	VLOAD	C	RL	V
$1.8V\pm0.15V$	V _{cc}	≤2 ns	V _{cc} /2	$2 \times V_{cc}$	30 pF	1 k Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	V_{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$\textbf{3.3 V} \pm \textbf{0.3 V}$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
$5~\text{V}\pm0.5~\text{V}$	V _{cc}	≤2.5 ns	V _{cc} /2	$2 \times V_{cc}$	50 pF	500 Ω	0.3 V

NOTES: A. C. includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators have the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. Because this device has open-drain outputs, t_{PLZ} and t_{PZL} are the same as t_{PD} .
- F. t_{PZL} is measured at V_M.
- G. t_{PLZ} is measured at $V_{OL} + V_{\Delta}$.
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms



8 Detailed Description

8.1 Overview

The SN74LVC2G07 device contains two open drain buffer with a maximum sink current of 32 mA. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

8.3 Feature Description

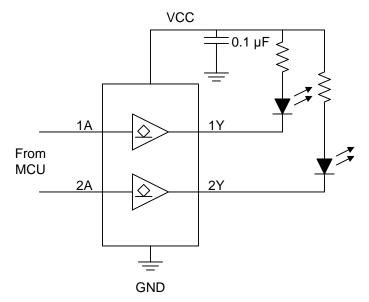
The open-drain configuration means that the device cannot provide its own output drive current; instead, it relies on pullup resistors to provide the "high" bus state. It can only drive the bus low. In the "Hi-Z" state, the SN74LVC2G07 acts as an open circuit and allows the external pullup to pull the bus high. Therefore, the pullup voltage determines the output level and therefore the SN74LVC2g07 can be used for up or down-translation. The device can sink 24 mA at 3 V while retaining an output voltage (V_{OL}) of 0.55 V or lower.

8.4 Device Functional Modes

Table 1 shows the device functional modes of the SN74LVC2G07 device.

INPUT A	OUTPUT Y
L	L
Н	Н

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC2G07 is a high-drive CMOS device that can be used to implement a high output drive buffer, such as an LED application. It can sink 32 mA of current at 4.5 V making it ideal for high-drive and wired-OR/AND functions. The inputs are 5.5 V tolerant allowing it to translate up and down to V_{CC} .

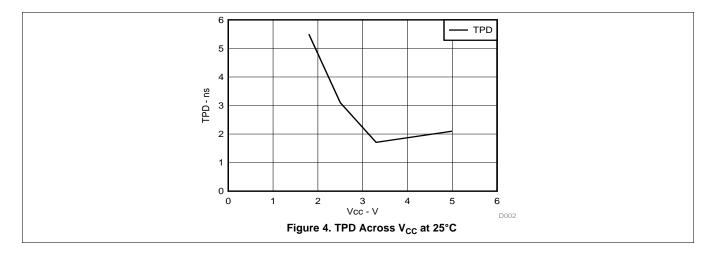
9.2 Typical Application

Figure 3. Typical Application

9.2.1 Design Requirements

- 1. Recommended Input Conditions
 - Rise time and fall time specs. See $(\Delta t/\Delta V)$ in the *Recommended Operating Conditions* table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V₁ max) in the *Recommended Operating Conditions* table at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed (I_O max) per output and should not exceed (Continuous current through V_{CC} or GND) total current for the part. These limits are located in the *Absolute Maximum Ratings* table.
 - Outputs should not be pulled above 5.5 V.

9.2.2 Detailed Design Procedure


This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

Copyright © 2001–2015, Texas Instruments Incorporated

Typical Application (continued)

9.2.3 Application Curve

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply a 0.1- μ F capacitor is recommended and if there are multiple V_{CC} pins then a 0.01- μ F or 0.022- μ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass caps to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient.

11.2 Layout Examples

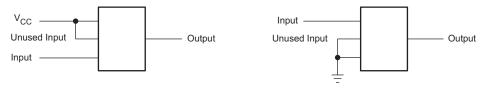


Figure 5. Layout Examples for SN74LVC2G07

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

NanoFree, E2E are trademarks of Texas Instruments.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

27-Jan-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LVC2G07DBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C075, C07F, C07K, C07R)	Samples
SN74LVC2G07DBVRG4	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C07F, C07R)	Samples
SN74LVC2G07DCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(CV5, CVF, CVJ, CV K, CVR)	Samples
SN74LVC2G07DCKRE4	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CV5	Samples
SN74LVC2G07DCKRG4	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CV5	Samples
SN74LVC2G07DCKT	ACTIVE	SC70	DCK	6	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(CV5, CVF, CVJ, CV K, CVR)	Samples
SN74LVC2G07DCKTG4	ACTIVE	SC70	DCK	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CV5	Samples
SN74LVC2G07DRYR	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CV	Samples
SN74LVC2G07DSF2	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CV	Samples
SN74LVC2G07DSFR	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CV	Samples
SN74LVC2G07YZPR	ACTIVE	DSBGA	YZP	6	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 125	(CV7, CVN)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

27-Jan-2021

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

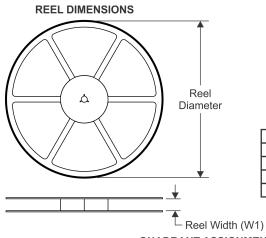
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

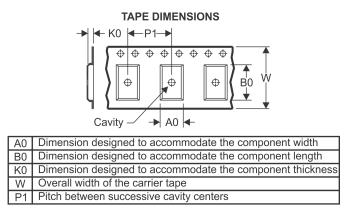
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC2G07 :

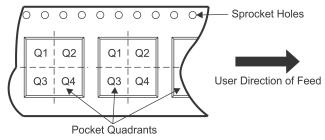
Enhanced Product: SN74LVC2G07-EP

NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

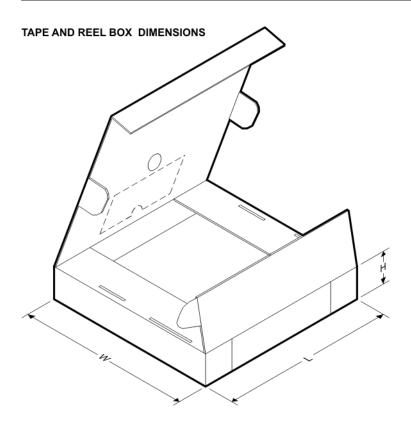

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



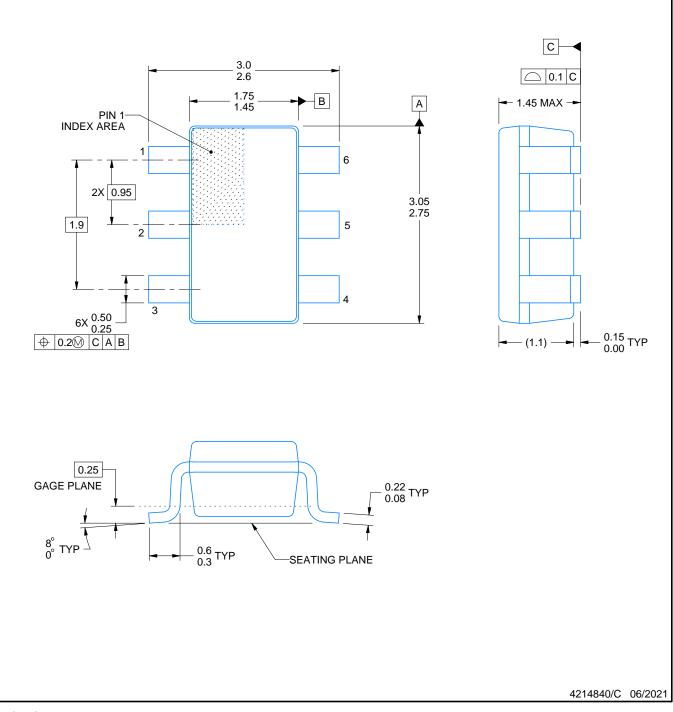
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC2G07DBVR	SOT-23	DBV	6	3000	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
SN74LVC2G07DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC2G07DBVRG4	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC2G07DCKR	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC2G07DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC2G07DCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74LVC2G07DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC2G07DCKRG4	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC2G07DCKT	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74LVC2G07DCKT	SC70	DCK	6	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC2G07DCKT	SC70	DCK	6	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC2G07DCKT	SC70	DCK	6	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC2G07DCKTG4	SC70	DCK	6	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC2G07DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74LVC2G07DSF2	SON	DSF	6	5000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q3
SN74LVC2G07DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC2G07YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

TEXAS INSTRUMENTS

PACKAGE MATERIALS INFORMATION

27-Jan-2021

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC2G07DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC2G07DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC2G07DBVRG4	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC2G07DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC2G07DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC2G07DCKR	SC70	DCK	6	3000	202.0	201.0	28.0
SN74LVC2G07DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC2G07DCKRG4	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC2G07DCKT	SC70	DCK	6	250	202.0	201.0	28.0
SN74LVC2G07DCKT	SC70	DCK	6	250	180.0	180.0	18.0
SN74LVC2G07DCKT	SC70	DCK	6	250	180.0	180.0	18.0
SN74LVC2G07DCKT	SC70	DCK	6	250	180.0	180.0	18.0
SN74LVC2G07DCKTG4	SC70	DCK	6	250	180.0	180.0	18.0
SN74LVC2G07DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC2G07DSF2	SON	DSF	6	5000	210.0	185.0	35.0
SN74LVC2G07DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC2G07YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0


DBV0006A

PACKAGE OUTLINE

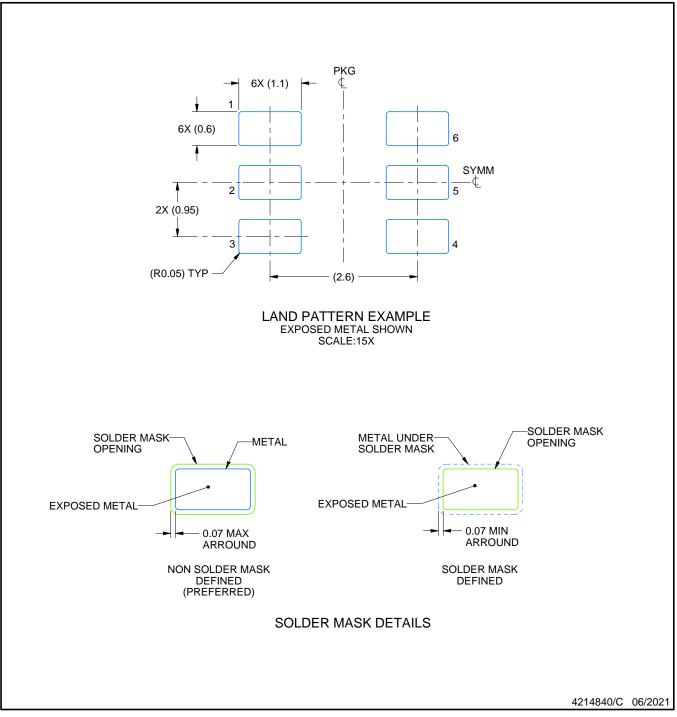
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.



DBV0006A

EXAMPLE BOARD LAYOUT

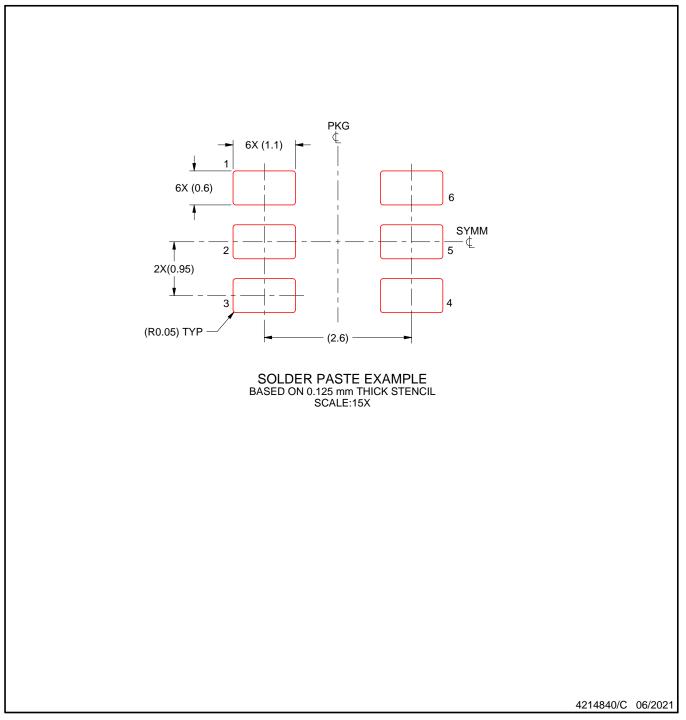
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0006A

EXAMPLE STENCIL DESIGN

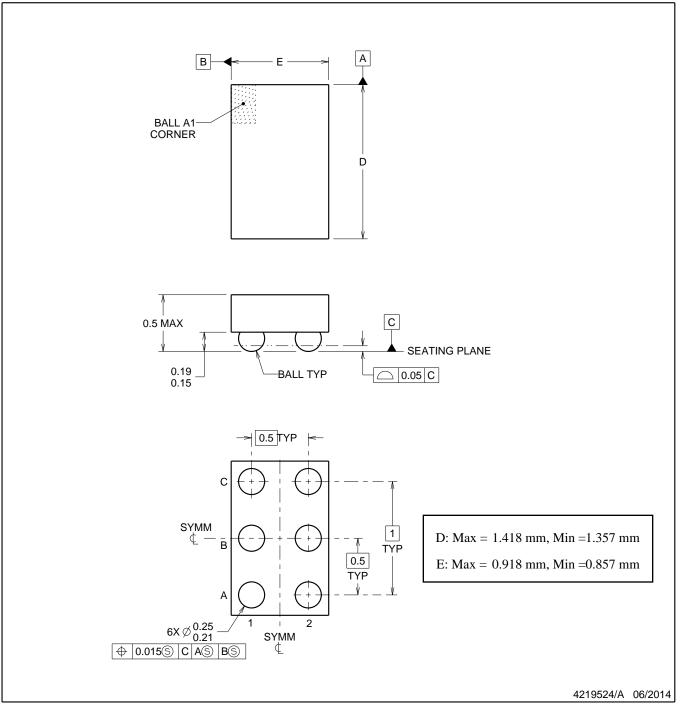
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


YZP0006

PACKAGE OUTLINE

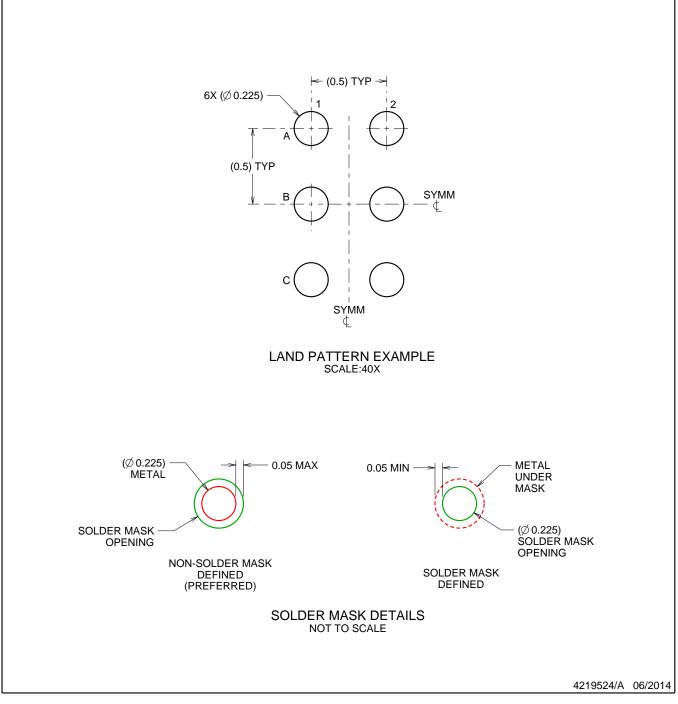
DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.



YZP0006

EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).



YZP0006

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

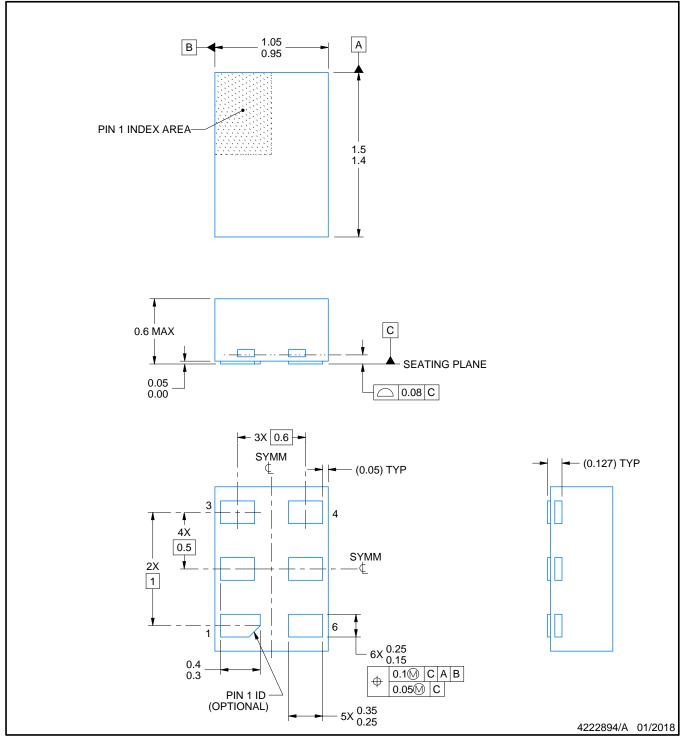
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207181/G


DRY0006A

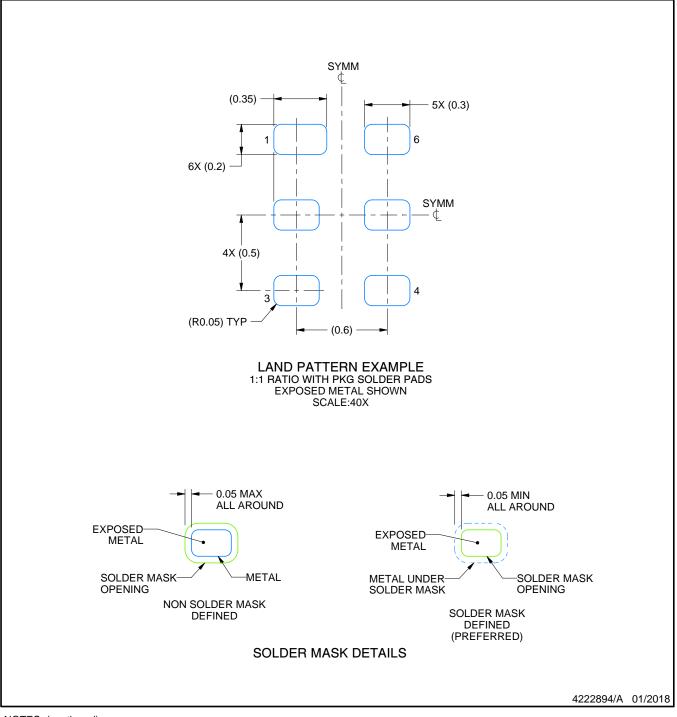
PACKAGE OUTLINE

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



DRY0006A

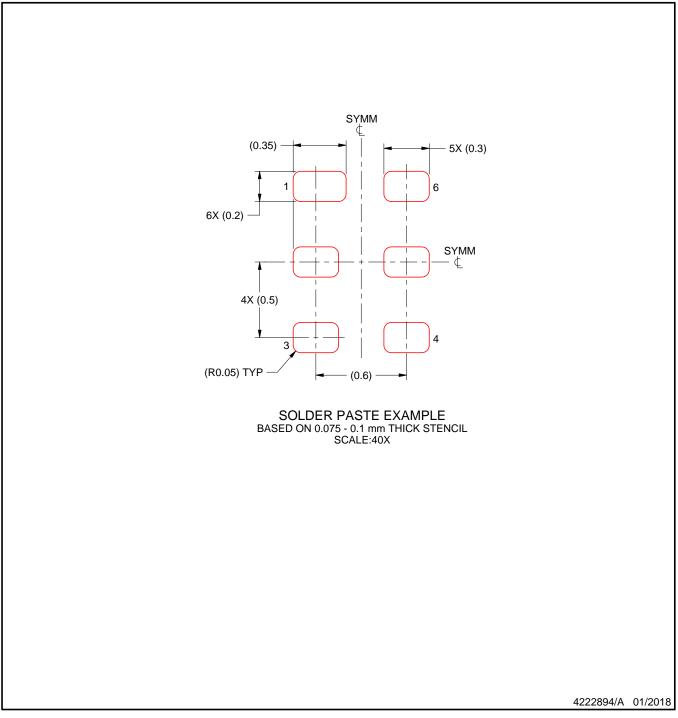
EXAMPLE BOARD LAYOUT

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

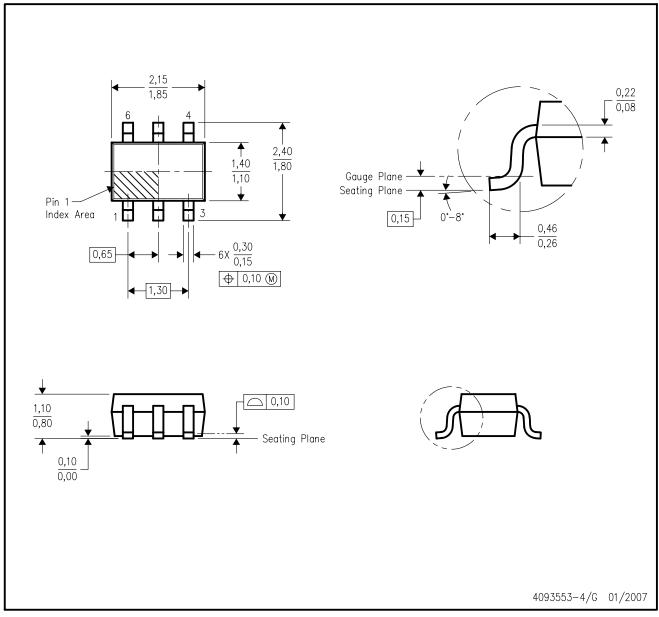


DRY0006A

EXAMPLE STENCIL DESIGN

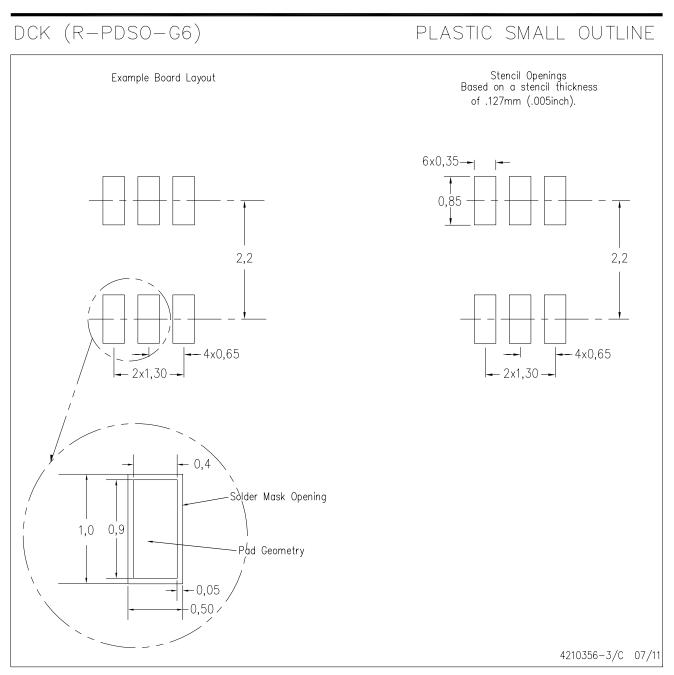
USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DCK (R-PDSO-G6)

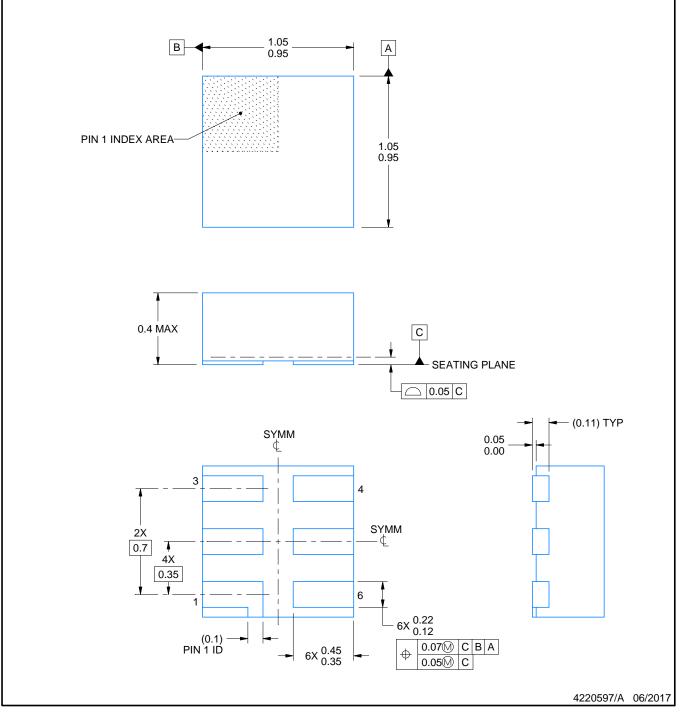

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.


DSF0006A

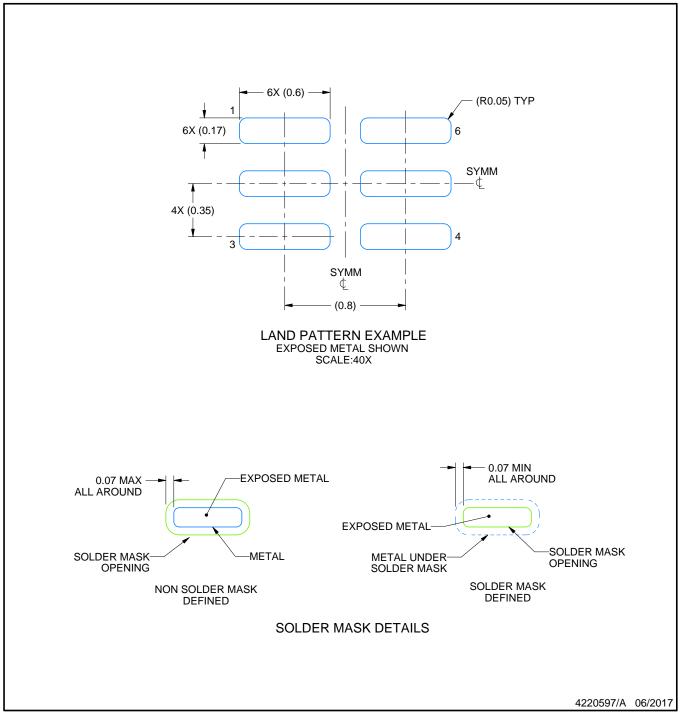
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.



DSF0006A

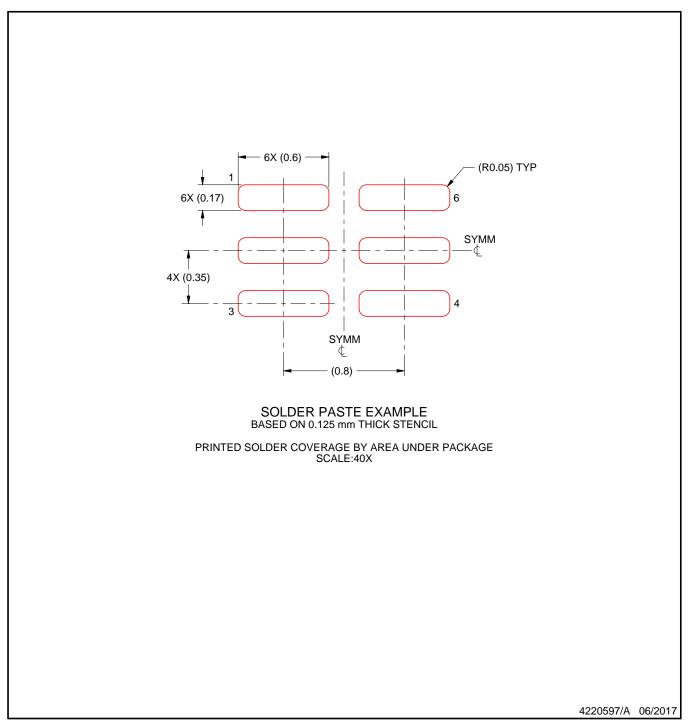
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



DSF0006A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated