onsemi

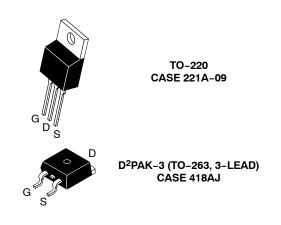
MOSFET – N-Channel, POWERTRENCH[®]

V _{DSS}	R _{DS(ON)} MAX	I _D MAX				
150 V	7.5 m Ω @ 10 V	130 A				
*Package limitation current is 120 A.						

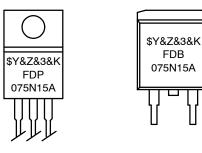
150 V, 130 A, 7.5 m Ω

FDP075N15A, FDB075N15A

Description

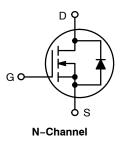

This N-Channel MOSFET is produced using **onsemi** advanced POWERTRENCH process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Features


- $R_{DS(on)} = 6.25 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 100 \text{ A}$
- Fast Switching
- Low Gate Charge
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- RoHS Compliant

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter


MARKING DIAGRAM

\$Y= onsemi logoFDP075N15A= Device CodeFDB075N15A&Z= Assembly Plant Code&3= 3-Digit Date Code Format

&K

= 2-Digits Lot Run Traceability Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

MOSFET MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Symbol	Para	FDP075N15A-F102 FDB075N15A	Unit	
V _{DSS}	Drain to Source Voltage		150	V
V _{GSS}	Gate to Source Voltage	– DC	±20	V
		– AC (f > 1 Hz)	±30	
I _D	Drain Current	– Continuous (T _C = 25°C)	130*	А
		– Continuous (T _C = 100°C)	92	
I _{DM}	Drain Current	- Pulsed (Note 1)	522	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	588	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		6.0	V/ns
PD	Power Dissipation	(T _C = 25°C)	333	W
		– Derate Above 25°C	2.22	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range	–55 to +175	°C	
TL	Maximum Lead Temperature for Soldering, 7	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
*Package limitation current is 120 A.
1. Repetitive rating: pulse-width limited by maximum junction temperature.
2. Starting T_J = 25°C, L = 3 mH, I_{AS} = 19.8 A.
3. I_{SD} ≤ 100 A, di/dt ≤ 200 A/µs, V_{DD} ≤ BV_{DSS}, starting T_J = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDP075N15A-F102 FDB075N15A	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.45	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	62.5	
	Thermal Resistance, Junction to Ambient, D2-PAK (1 in ² Pad of 2-oz Copper), Max.	40	

Symbol	Parameter Test Conditions			Тур	Max	Unit
OFF CHAR	ACTERISTICS	•				
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	150	_	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}/$	Breakdown Voltage Temperature Coefficient	I_D = 250 $\mu A,$ Referenced to 25°C	-	0.1	-	V/∘C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V	-	-	1 500	μΑ
		V _{DS} = 120 V, T _C = 150°C	-	-		
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	2.0	-	4.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 100 A	-	6.25	7.5	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 100 A	-	164	-	S
DYNAMIC (CHARACTERISTICS	•				
C _{iss}	Input Capacitance	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	5525	7350	pF
C _{oss}	Output Capacitance	1	-	516	685	pF
C _{rss}	Reverse Transfer Capacitance	1	-	21	-	pF
C _{oss(er)}	Energy Related Output Capacitance	V _{DS} = 75 V, V _{GS} = 0 V	-	909	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 75 \text{ V}, \text{ I}_{D} = 100 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$	-	77	100	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	-	26	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	1	-	11	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	1	-	16	-	nC
ESR	Equivalent Series Resistance (G-S)	f = 1 MHz	-	2.29	-	Ω
SWITCHING	G CHARACTERISTICS	•				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 100 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	28	66	ns
t _r	Turn-On Rise Time	R _G = 4.7 Ω (Note 4)	-	37	84	ns
t _{d(off)}	Turn-Off Delay Time	1	-	62	134	ns
t _f	Turn-Off Fall Time	1	-	21	52	ns
DRAIN-SO	URCE DIODE CHARACTERISTICS	•		-	-	-
۱ _S	Maximum Continuous Drain to Source Diode Forward Current			_	130*	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	_	520	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 100 A	-	-	1.25	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, V_{DD} = 75 V, I_{SD} = 100 A,$	-	97	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/µs	_	264	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

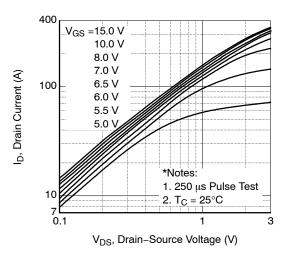


Figure 1. On–Region Characteristics

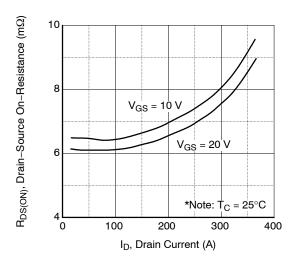


Figure 3. On–Resistance Variation vs. Drain Current and Gate Voltage

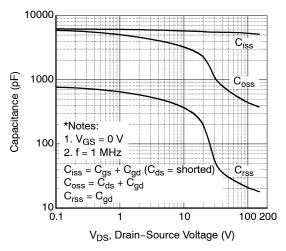


Figure 5. Capacitance Characteristics

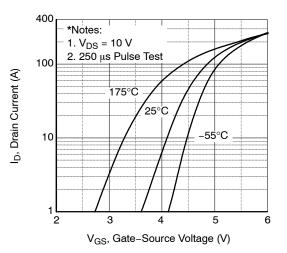


Figure 2. Transfer Characteristics

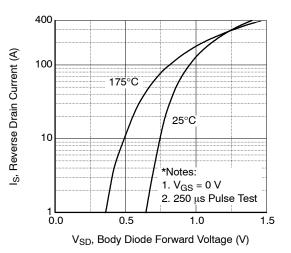


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

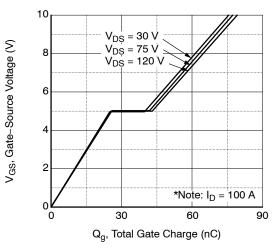
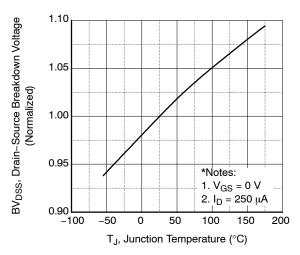
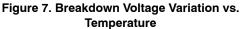




Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

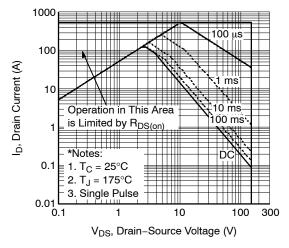
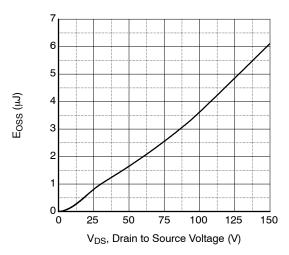



Figure 9. Maximum Safe Operating Area

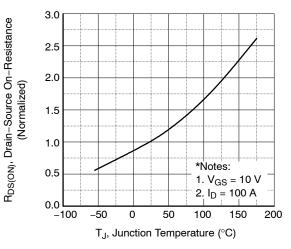


Figure 8. On–Resistance Variation vs. Temperature

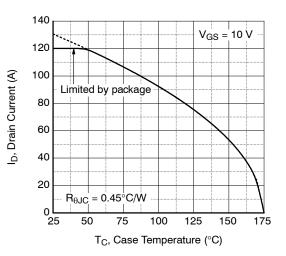


Figure 10. Maximum Drain Current vs. Case Temperature

Figure 12. Unclamped Inductive Switching Capability

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

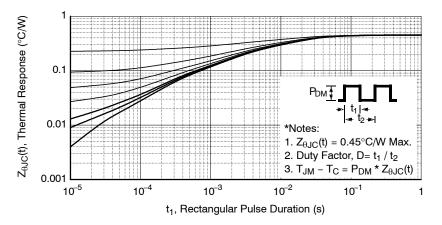


Figure 13. Transient Thermal Response Curve

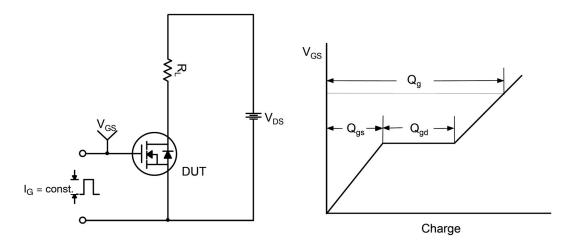


Figure 14. Gate Charge Test Circuit & Waveform

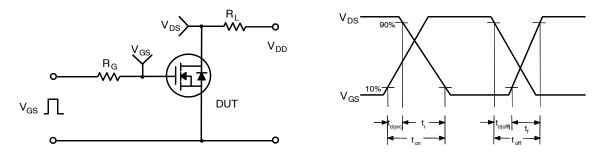


Figure 15. Resistive Switching Test Circuit & Waveforms

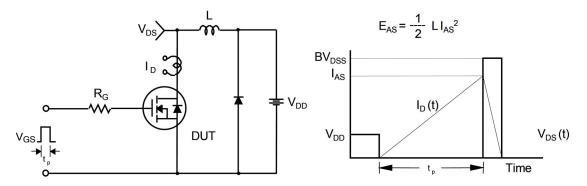


Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms

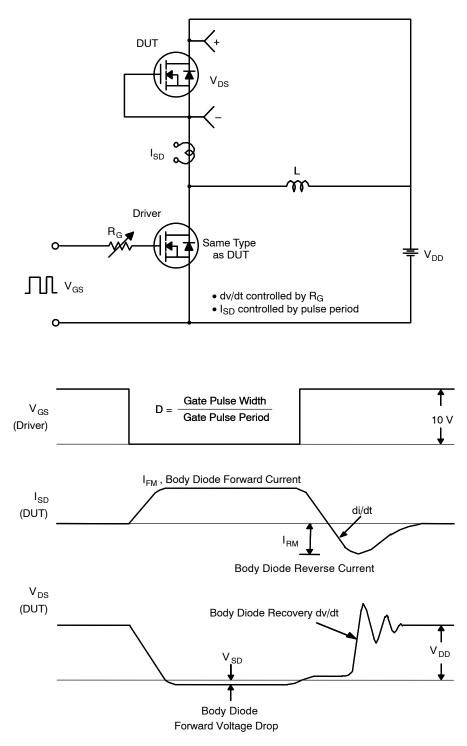


Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Reel Size	Tape Width	Shipping [†]	
FDP075N15A-F102	FDP075N15A	TO-220	N/A	N/A	50 units / Tube	
FDB075N15A	FDB075N15A	D ² -PAK	330 mm	24 mm	800 units / Tape & Reel	

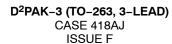
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

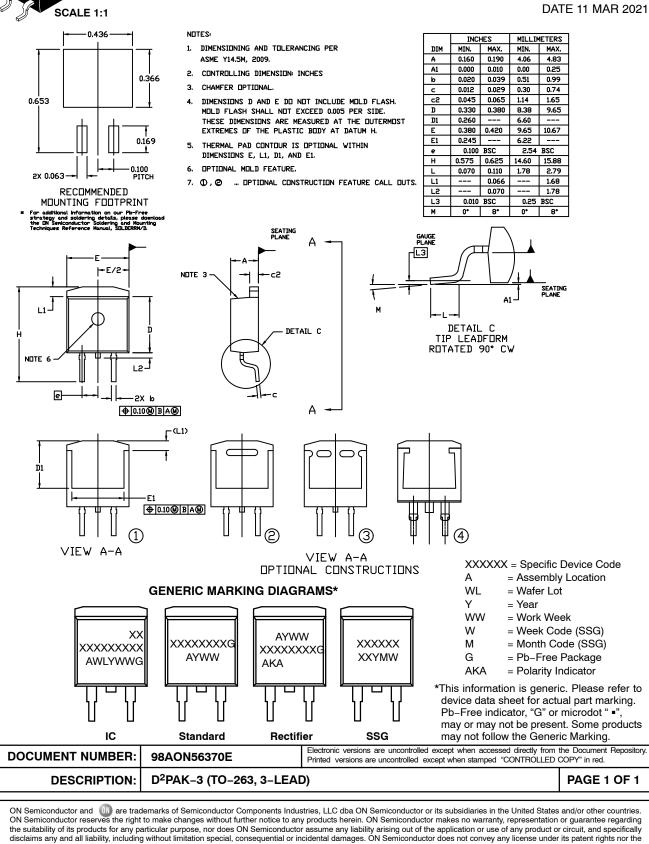
S

onsemi

		TO-220 CASE 221A ISSUE AK						DATE	13 JAN 2022
SCALE 1:1			1. C 2. C 3. C	CONTR DIMEN LEAD	ROLLING DI ISION Z DEI D IRREGULA	MENSION FINES A ZO ARITIES AR	ONE WHERE AL E ALLOWED.		
			4. N	лах м	VIDTHFOR	F102 DEV	ICE = 1.35MM		
			Г		INC	HES	MILLIM	ETERS	
				ым 🛛	MIN.	MAX.	MIN.	MAX.	
	2 3			A	0.570	0.620	14.48	15.75	
				в	0.380	0.415	9.66	10.53	
н —	₩₩			с	0.160	0.190	4.07	4.83	
	7 \7	H I		D	0.025	0.038	0.64	0.96	
z_				F	0.142	0.161	3.60	4.09	
<u> </u>	I K			G	0.095	0.105	2.42	2.66	
				н	0.110	0.161	2.80	4.10	
	Щ Щ <u> </u>	Ü I		J	0.014	0.024	0.36	0.61	
	Г <mark>і</mark>			к	0.500	0.562	12.70	14.27	
V — + I I-	►- ``.			L	0.045	0.060	1.15	1.52	
G 	. <mark> </mark> J [−]			N	0.190	0.210	4.83	5.33	
· · · ·	- → D			Q	0.100	0.120	2.54	3.04	
	N 🖛			R	0.080	0.110	2.04	2.79	
				s	0.045	0.055	1.15	1.41	
				т	0.235	0.255	5.97	6.47	
				U	0.000	0.050	0.00	1.27	
				V	0.045		1.15		
				Z		0.080		2.04	
2. 3. 4. STYLE 5: PIN 1. 2.	BASE PIN 1. COLLECTOR 2. EMITTER 3. COLLECTOR 4. STYLE 6: GATE DRAIN 2.	EMITTER COLLECTOR EMITTER ANODE CATHODE	IN 1. CAT 2. ANO 3. GAT 4. ANO LE 7: IN 1. CAT 2. ANO	ode Te ode Thode ode		2. 3. 4. STYLE 8: PIN 1. 2.	MAIN TERMINAL MAIN TERMINAL GATE MAIN TERMINAL CATHODE ANODE	2	
4. STYLE 9: PIN 1.	DRAIN 4. STYLE 10 GATE PIN 1.	ANODE CATHODE GATE P SOURCE	3. CAT 4. ANO LE 11: IN 1. DR/ 2. SOU	ode Ain		4. STYLE 12: PIN 1.	EXTERNAL TRIP ANODE MAIN TERMINAL MAIN TERMINAL	. 1	
3.	EMITTER 3.	DRAIN SOURCE	3. GAT 4. SOL	ΤE		3.	GATE NOT CONNECTI		



 DOCUMENT NUMBER:
 98ASB42148B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.


 DESCRIPTION:
 TO-220
 PAGE 1 OF 1

 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative