

```
Frequency Range:
Frequency Stability Options(ppm): \(\pm 20, \pm 25, \pm 50, \pm 100\)
Temperature Range: (standard) \(\quad 0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
    (Option "M")
    (Option "E"*)
Storage Temperature:
Input Voltage:
Input Current:
    (1.544~34.00 MHz)
    (35.00~50.00 MHz)
    (51.00~69.00 MHz)
    (70.00~156.25 MHz)
Standby Current:
Output:
Symmetry:
Rise/Fall Time:
    (1.54~10.00 MHz)
    (10.10~30.00 MHz)
    (30.10~50.00 MHz)
    (50.10~80.00 MHz)
    (80.10~156.25 MHz)
Logic:
Disable Time:
Start-up Time:
Load:
Jitter RMS: 12 kHz~80 MHz
Sub-harmonics:
1.544 to 156.250 MHz
5ns Max @ 20\% to 80\% Vdd
4ns Max @ 20\% to 80\% Vdd
3ns Max @ 20\% to 80\% Vdd
2.5ns Max @ 20\% to 80\% Vdd
2ns Max @ 20\% to 80\% Vdd
"0"= 10\% Vdd Max
"1"= 90\% Vdd Min
200ns Max
\(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\(-45^{\circ} \mathrm{C}\) to \(90^{\circ} \mathrm{C}\)
\(3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\)
```

1.544 to 156.250 MHz
$\pm 20, \pm 25, \pm 50, \pm 100$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-45^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
18mA Max
25mA Max
30mA Max
50mA Max
3uA Typical，10uA Max
HCMOS
45／55\％Max＠50\％Vdd

5ns Max＠20\％to 80\％Vdd
4ns Max＠20\％to 80\％Vdd
3ns Max＠20\％to 80\％Vdd
2．5ns Max＠20\％to 80\％Vdd
2ns Max＠20\％to 80\％Vdd
＂1＂＝90\％Vdd Min
200ns Max
10ms Max
15pF Max
0．5ps Typical，1ps Max
None
＜3ppm $1^{\text {st }}$ year，＜1ppm every year thereafter

```
＊available in select frequencies－40／85
```


C33xx Model
 $5 \times 7 \mathrm{~mm}$ SMD， 3.3 V ，HCMOS

Model C33xx is a 1.544 MHz to 156.250 MHz HCMOS Clock Oscillator operating at 3．3Volts．The oscillator utilizes Fundamental or High Q Third Overtone crystal design providing very low Jitter and Phase Noise．No Sub－Harmonics are present in the Output Signal．

Applications：

Mechanical：

Shock：MIL－STD－883，Method 2002，Condition B Vibration：MIL－STD－883，Method 2007，Condition A Solderability：MIL－STD－883，Method 2003
Solvent Resistance：MIL－STD－202，Method 215
Resistance to Soldering Heat：MIL－STD－202，Method 210，Condition I or J

Environmental：
Thermal Shock：MIL－STD－883，Method 1011，Condition A Moisture Resistance：MIL－STD－883，Method 1004
Digital Video
SONET／SDH／DWDM
Storage Area Networks
Broadband Access
Ethernet，Gigabit Ethernet

Crystek Corporation reserves the right to make changes to its products and／or information contained herein without notice． No liability is assumed as a result of its use or application．

Rev：R
Date：04－Aug－2020 Page 1 of 2

Dimensions inches（mm）
All dimensions are Max unless otherwise specified．

Enable／Disable	
Function pin 1	Output pin
Open	Active
＂1＂level 0．7×Vcc Min	Active
＂0＂level $0.3 \times \mathrm{Vcc} \mathrm{Max}$	High Z

PIN	Function
1	E／D
2	GND
3	OUT
4	Vcc

Crystek Part Number Guide	
\＃1 Temp．Range：Blank $=0 / 70^{\circ} \mathrm{C}, \mathrm{M}=-20 / 70^{\circ} \mathrm{C}, \mathrm{E}=-40 / 85^{\circ} \mathrm{C}$ \＃2 Stability：（see Table 1） \＃3 Frequency in MHz： 3 or 6 decimal places	Stability Indicator
	$\pm 100 \mathrm{ppm}$
Example： $\mathrm{C} 3392-44.736 \mathrm{MHz}=3.3 \mathrm{~V}, 0 / 70^{\circ} \mathrm{C}, \pm 50 \mathrm{ppm}, 44.736 \mathrm{MHz}$ СМ $3391-44.736 \mathrm{MHz}=3.3 \mathrm{~V},-20 / 70^{\circ} \mathrm{C}, \pm 25 \mathrm{ppm}, 44.736 \mathrm{MHz}$ CE $3390-44.736 \mathrm{MHz}=3.3 \mathrm{~V},-40 / 85^{\circ} \mathrm{C}, \pm 100 \mathrm{ppm}, 44.736 \mathrm{MHz}$	$\pm 25 \mathrm{ppm}$
	$8^{*} \quad \pm 20$ appm
	Table

NOTE：Reflow Profile with $240^{\circ} \mathrm{C}$ peak also acceptable．

Crystek Corporation reserves the right to make changes to its products and／or information contained herein without notice． No liability is assumed as a result of its use or application．

Rev：R
Date：04－Aug－2020
Page 2 of 2

