H22L Series OPTOLOGIC ${ }^{\circledR}$ OPTICAL INTERRUPTER SWITCH

Features

Black plastic housing
－Choice of inverter or buffer output functions
■ Choice of open－collector or totem－pole output configuration
－No contact switching
－TTL／CMOS compatible output functions

PART NUMBER DEFINITIONS	
H22LTB	Totem－pole，buffer output
H22LTI	Totem－pole，inverter output
H22LOB	Open－collector，buffer output
H22LOI	Open－collector，inverter output

Package Dimensions

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless otherwise specified $)$			
Parameter	Symbol	Rating	Units
Operating Temperature	$\mathrm{T}_{\mathrm{OPR}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Soldering Temperature (Iron) ${ }^{(3,4,5,6)}$	$\mathrm{T}_{\mathrm{SOL}-\mathrm{I}}$	240 for 5 sec	${ }^{\circ} \mathrm{C}$
Soldering Temperature (Flow) $)^{(3,4,6)}$	$\mathrm{T}_{\mathrm{SOL}-\mathrm{F}}$	260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER Continuous Forward Current	I_{F}		
Reverse Voltage	V_{R}	50	mA
Power Dissipation ${ }^{(1)}$	P_{D}	5	V
SENSOR Continuous Forward Current		100	mW
Output Current	I_{F}		mA
Supply Voltage	I_{O}	50	mA
Output Voltage	V_{CC}	4.0 to 16	V
Power Dissipation ${ }^{(1)}$	V_{O}	30	V

ELECTRICAL / OPTICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Part Number	Test Conditions	Symbol	Min.	Typ.	Max	Units
Operating Supply Voltage	V_{CC}	V_{CC}	4.5		16	V
INPUT DIODE Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	V_{F}	-		1.7	V
Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	-		10	$\mu \mathrm{A}$
COUPLED Operating Supply Current	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$ or $0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=16 \mathrm{~V}$	I_{cc}	-		5	mA
Low Level Output Voltage H22LTB, H22LOB	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	$\mathrm{V}_{\text {OL }}$	-		0.4	V
Low Level Output Voltage H22LTI, H22LOI	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=360 \Omega$	$\mathrm{V}_{\text {OL }}$	-		0.4	V
High Level Output Voltage H22LTB	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	V_{OH}	2.4		-	V
High Level Output Voltage H22LTI	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	V_{OH}	2.4		-	V
High Level Output Current H22LOB	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \end{aligned}$	IOH			100	$\mu \mathrm{A}$
High Level Output Current H22LOI	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \end{aligned}$	IOH	-		100	$\mu \mathrm{A}$
Turn on Threshold Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=360 \Omega$	$\mathrm{I}_{\mathrm{F}}(+)$	-		15	mA
Turn off Threshold Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=360 \Omega$	$\mathrm{I}_{\mathrm{F}}(-)$	0.50		-	mA
Hysteresis Ratio		$\mathrm{I}_{\mathrm{F}}(+) / \mathrm{I}_{\mathrm{F}}(-)$		1.3		
Propagation Delay	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=360 \Omega$	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$		5		$\mu \mathrm{s}$
Output Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=360 \Omega$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		70		ns

NOTES (Applies to Max Ratings and Characteristics Tables.):

1. Derate power dissipation linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
2. Derate power dissipation linearly $2.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
3. RMA flux is recommended.
4. Methanol or isopropyl alcohols are recommended as cleaning agents.

5 . Soldering iron $1 / 16$ " (1.6 mm) from housing.
6. As long as leads are not under any stress or spring tension.

INPUT / OUTPUT TABLE		
Part Number	LED	Output
H22LTB	On	High
H22LTB	Off	Low
H22LTI	On	Low
H22LTI	Off	High
H22LOB	On	High
H22LOB	Off	Low
H22LOI	On	Low
H22LOI	Off	High

www.fairchildsemi.com

Circuit Schematics

H22LTB
Totem-Pole Output Buffer

H22LOI
 Open-Collector Output Inverter

Circuit Schematics (Continued)

Typical Operating Circuit

Switching Test Curve for Inverters

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	$\mathrm{FAST}^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	Power247 ${ }^{\text {tm }}$	Stealth ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	LittleFET ${ }^{\text {M }}$	POWEREDGE ${ }^{\text {¹ }}$	SuperFET ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	FPS ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	PowerSaver ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3
CoolFET ${ }^{\text {M }}$	FRFET ${ }^{\text {m }}$	MicroFET ${ }^{\text {m }}$	PowerTrench ${ }^{\circledR}$	SuperSOT ${ }^{\text {тм }}$-6
CROSSVOLT ${ }^{\text {m }}$	GlobalOptoisolator ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	QFET ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8
DOME ${ }^{\text {TM }}$	GTO ${ }^{\text {™ }}$	MICROWIRE ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {тм }}$	MSX ${ }^{\text {™ }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {¹ }}$	$1^{2} C^{\text {™ }}$	MSXPro ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TINYOPTO ${ }^{\text {™ }}$
EnSigna ${ }^{\text {TM }}$	$i-L o^{\text {TM }}$	OCX ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
FACT ${ }^{\text {m }}$	ImpliedDisconnect ${ }^{\text {TM }}$	OCXPro ${ }^{\text {тм }}$	RapidConnect ${ }^{\text {™ }}$	UHC' ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$		OPTOLOGIC ${ }^{\circledR}$	μ SerDes ${ }^{\text {TM }}$	UltraFET ${ }^{\circledR}$
Across the board. Around the world. ${ }^{\text {TM }}$		OPTOPLANAR ${ }^{\text {TM }}$	SILENT SWITCHER ${ }^{\circledR}$	VCX ${ }^{\text {m }}$
The Power Franchise ${ }^{\circledR}$		PACMAN ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	
Programmable Active Droop ${ }^{\text {TM }}$		POP'м	SPM ${ }^{\text {T }}$	

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TOANY PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOTASSUME ANY LIABILITY ARISING OUT OF THEAPPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

$$
\begin{array}{ll}
\text { FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT } \\
\text { DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATION. } \\
\text { As used herein: } & \\
\text { 1. Life support devices or systems are devices or } & \text { 2. A critical component is any component of a life } \\
\text { systems which, (a) are intended for surgical implant into } & \text { support device or system whose failure to perform can } \\
\text { the body, or (b) support or sustain life, or (c) whose } & \text { be reasonably expected to cause the failure of the life } \\
\text { failure to perform when properly used in accordance } & \text { support device or system, or to affect its safety or } \\
\text { with instructions for use provided in the labeling, can be } & \text { effectiveness. } \\
\begin{array}{ll}
\text { reasonably expected to result in significant injury to the }
\end{array} & \\
\hline
\end{array}
$$

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

